首页     开始     To Survive in the Universe    
Inhabited Sky
    News@Sky     天文图片     收集     论坛     Blog New!     常见问题     新闻     登录  

HD 92253


目录

图像

上传图像

DSS Images   Other Images


相关文章

Extent of Excess Far-Infrared Emission around Luminosity Class III Stars
With the Infrared Space Observatory, we conducted 3×3 pixelimaging photometry of 12 luminosity class III stars, which werepreviously presumed to have dust particles around them, at far-infraredwavelengths (60 and 90 μm). Eleven out of 12 targets show a peak ofexcess (above photosphere) far-infrared emission at the location of thestar, implying that the dust particles are truly associated with stars.To estimate the size of the excess emission source, the flux ratio ofcenter to boundary pixels of the 3×3 array was examined. Theradius of the dust emission is found to be ~3000 to ~10,000 AU for athin shell distribution and ~5000 to ~25,000 AU for a uniformdistribution. We consider three models for the origin of the dust:disintegration of comets, sporadic dust ejection from the star, andemission from nearby interstellar cirrus. The data seem to rule out thefirst model (as far as the ``Kuiper belt-like'' particles are assumed tobe large blackbody grains) but do not enable us to choose between theother two models.

Late-type giants with infrared excess. I. Lithium abundances
de la Reza et al. (1997) suggested that all K giants become Li-rich fora short time. During this period the giants are associated with anexpanding thin circumstellar shell supposedly triggered by an abruptinternal mixing mechanism resulting in the surface Li enrichment. Inorder to test this hypothesis twenty nine late-type giants withfar-infrared excess from the list of Zuckerman et al. (1995) wereobserved in the Li-region to study the connection between thecircumstellar shells and Li abundance. Eight giants have been found tohave log epsilon (Li) > 1.0. In the remaining giants the Li abundanceis found to be much lower. HD 219025 is found to be a rapidly rotating(projected rotational velocity of 23 +/-3 km s(-1) ), dusty and Li-rich(log epsilon (Li) = 3.0+/-0.2) K giant. Absolute magnitude derived fromthe Hipparcos parallax reveals that it is a giant and not apre-main-sequence star. The evolutionary status of HD 219025 seems to besimilar to that of HDE 233517 which is also a rapidly rotating, dustyand Li-rich K giant. The Hipparcos parallaxes of all the well studiedLi-rich K giants show that most of them are brighter than the ``clump"giants. Their position in the H-R diagram indicates that they have gonethrough mixing and the initial abundance of Li is not preserved. Thereseems to be no correlations between Li abundances, rotational velocitiesand carbon isotope ratios. The only satisfactory explanation for theoverabundance of lithium in these giants is the creation of Li by theextra deep mixing and the associated ``cool bottom processing". Based onobservations obtained at the European Southern Observatory, La Silla,Chile, and at the Observatoire de Haute Provence, France.

Giants with infrared excess.
We have correlated optical and infrared catalogs in order to extract alarge sample of luminosity class III stars with known infrared fluxdensities. For a non-negligible fraction of G and K giants, afar-infrared excess emission was found, starting beyond 25μm. Anexplanation in terms of present-day mass loss thus becomes unlikely,since the dust should then be warmer and the excess emission less far inthe infrared. We believe that the far-infrared excesses of theseobjects, most likely first-ascent giants, are related to the Vegaphenomenon. The dusty disks around these stars, gradually cooled downduring their main-sequence phase, could be reheated once the star leavesthe main sequence and enters the luminous post-main-sequence phase. Thefairly large sample we constructed enables us to derive an estimationfor the occurrence of excesses. This fraction of G or K giants withfar-infrared excess appears to be distinctly smaller than amongmain-sequence stars. Since the higher radiation field of giants couldlead to a larger evaporation rate of the circumstellar debris, this factdoes not conflict with our hypothesis.

On a Rapid Lithium Enrichment and Depletion of K Giant Stars
A model scenario has recently been introduced by de la Reza andcolleagues to explain the presence of very strong Li lines in thespectra of some low-mass K giant stars. In this scenario all ordinary,Li-poor, K giants become Li rich during a short time (~105 yr) whencompared to the red giant phase of 5 x 107 yr. In this "Li period," alarge number of the stars are associated with an expanding thincircumstellar shell supposedly triggered by an abrupt internal mixingmechanism resulting in a surface new 7Li enrichment. This Letterpresents nearly 40 Li-rich K giants known up to now. The distribution ofthese Li-rich giants, along with 41 other observed K giants that haveshells but are not Li rich, in a color-color IRAS diagram confirms thisscenario, which indicates, also as a new result, that a rapid Lidepletion takes place on a timescale of between ~103 and 105 yr. Thismodel explains the problem of the presence of K giants with far-infraredexcesses presented by Zuckerman and colleagues. Other present and futuretests of this scenario are briefly discussed.

Luminosity Class III Stars with Excess Far-Infrared Emission
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1995ApJ...446L..79Z&db_key=AST

提交文章


相关链接

  • - 没有找到链接 -
提交链接


下列团体成员


观测天体数据

星座:三角座
右阿森松:10h35m53.88s
赤纬:-75°47'35.4"
视星:7.461
距离:192.308 天文距离
右阿森松适当运动:-63.9
赤纬适当运动:28.7
B-T magnitude:9.001
V-T magnitude:7.589

目录:
适当名称   (Edit)
HD 1989HD 92253
TYCHO-2 2000TYC 9397-443-1
USNO-A2.0USNO-A2 0075-02407816
HIPHIP 51873

→ 要求更多目录从vizier