Ýçindekiler
Görüntüler
Resim Yükleyin
DSS Images Other Images
Ýlgili Makaleler
Spitzer Survey of the Large Magellanic Cloud: Surveying the Agents of a Galaxy's Evolution (SAGE). I. Overview and Initial Results We are performing a uniform and unbiased imaging survey of the LargeMagellanic Cloud (LMC; ~7deg×7deg) using theIRAC (3.6, 4.5, 5.8, and 8 μm) and MIPS (24, 70, and 160 μm)instruments on board the Spitzer Space Telescope in the Surveying theAgents of a Galaxy's Evolution (SAGE) survey, these agents being theinterstellar medium (ISM) and stars in the LMC. This paper provides anoverview of the SAGE Legacy project, including observing strategy, dataprocessing, and initial results. Three key science goals determined thecoverage and depth of the survey. The detection of diffuse ISM withcolumn densities >1.2×1021 H cm-2 permits detailed studies of dust processes in the ISM. SAGE'spoint-source sensitivity enables a complete census of newly formed starswith masses >3 Msolar that will determine the current starformation rate in the LMC. SAGE's detection of evolved stars withmass-loss rates >1×10-8 Msolaryr-1 will quantify the rate at which evolved stars injectmass into the ISM of the LMC. The observing strategy includes two epochsin 2005, separated by 3 months, that both mitigate instrumentalartifacts and constrain source variability. The SAGE data arenonproprietary. The data processing includes IRAC and MIPS pipelines anda database for mining the point-source catalogs, which will be releasedto the community in support of Spitzer proposal cycles 4 and 5. Wepresent initial results on the epoch 1 data for a region near N79 andN83. The MIPS 70 and 160 μm images of the diffuse dust emission ofthe N79/N83 region reveal a similar distribution to the gas emissions,especially the H I 21 cm emission. The measured point-source sensitivityfor the epoch 1 data is consistent with expectations for the survey. Thepoint-source counts are highest for the IRAC 3.6 μm band and decreasedramatically toward longer wavelengths, consistent with the fact thatstars dominate the point-source catalogs and the dusty objects detectedat the longer wavelengths are rare in comparison. The SAGE epoch 1point-source catalog has ~4×106 sources, and more areanticipated when the epoch 1 and 2 data are combined. Using Milky Way(MW) templates as a guide, we adopt a simplified point-sourceclassification to identify three candidate groups-stars without dust,dusty evolved stars, and young stellar objects-that offer a startingpoint for this work. We outline a strategy for identifying foreground MWstars, which may comprise as much as 18% of the source list, andbackground galaxies, which may comprise ~12% of the source list.
| Pulkovo compilation of radial velocities for 35495 stars in a common system. Not Available
| MSX, 2MASS, and the LARGE MAGELLANIC CLOUD: A Combined Near- and Mid-Infrared View The Large Magellanic Cloud (LMC) has been observed by the MidcourseSpace Experiment (MSX) in the mid-infrared and the Two Micron All SkySurvey (2MASS) in the near-infrared. We have performed across-correlation of the 1806 MSX catalog sources and nearly 1.4 million2MASS cataloged point and extended sources and find 1664 matches. Usingthe available color information, we identify a number of stellarpopulations and nebulae, including main-sequence stars, giant stars, redsupergiants, carbon- and oxygen-rich asymptotic giant branch (AGB)stars, planetary nebulae, H II regions, and other dusty objects likelyassociated with early-type stars. A total of 731 of these sources haveno previous identification. We compile a listing of all objects, whichincludes photometry and astrometry. The 8.3 μm MSX sensitivity is thelimiting factor for object detection: only the brighter red objects,specifically the red supergiants, AGB stars, planetary nebulae, and H IIregions, are detected in the LMC. The remaining objects are likely inthe Galactic foreground. The spatial distribution of the infrared LMCsources may contribute to understanding stellar formation and evolutionand the overall galactic evolution. We demonstrate that a combined mid-and near-infrared photometric baseline provides a powerful means ofidentifying new objects in the LMC for future ground-based andspace-based follow-up observations.
| A Catalogue of carbon stars in the LMC A catalogue of 7760 carbon stars in the Large Magellenic Cloud ispresented. The stars were identified during a systematic survey ofobjective-prism plates taken with the UK 1.2 m Schmidt Telescope. Thecatalogue is compared with other lists of carbon stars and thedistribution of the carbon stars is discussed. Tables 3--5 are onlyavailable in electronic form at the CDS via anonymous ftp tocsarc.u-strasbf.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/369/932
| UBV photometry of galactic foreground and LMC member stars. I - Galactic foreground stars UBV photometry of 955 galactic foreground stars in the direction to theLarge Magellanic Cloud is presented. The stars have been chosen fromforeground star catalogs and have been measured to complete a new database containing entries of more than 5000 stars in the direction of theLMC. First and second order extinction coefficients at La Silla/Chileare given, which differ from the standard values because of the 1991eruption of the volcano Mt. Pinatubo.
| Positional reference stars in the Magellanic Clouds The equatorial coordinates are determined of 926 stars (mainly ofgalactic origin) in the direction of the Magellanic Clouds at the meanepoch T = 1978.4 with an overall accuracy characterized by the meanvalues of the O-C coordinates, Sa = 0.35 arcsec and Sd = 0.38 arcsec,calculated from the coordinates of the Perth reference stars. Thesevalues are larger than the accuracy expected for primary standard stars.They allow the new positions to be considered as those of reliablesecondary standard stars. The published positions correspond to anunquestionable improvement of the quality of the coordinates provided inthe current catalogs. This study represents an 'astrometric step' in thestarting of a 'Durchmusterung' of the Magellanic Clouds organized by deBoer (1988, 1989).
| The Galactic foreground reddening of SN 1987 A Walraven photometric observations of 41 Galactic foreground stars in thedirection of SN 1987 A were used to investigate the interstellarreddening originating to material inside the Galaxy. Two differentmethods, one using the galactic reddenings around SN 1987 A from thedistribution at the sky, and one presenting the reddenings as a functionof the distance, both yield for the galactic reddening of SN 1987 AE(B-V) = 0.08 m + or - 0.01 m, which is larger than the usually assumedvalues. From the relation between the distances of the stars and theirreddening the thickness of the dust layer in the direction of SN 1987 Ais estimated at 110 pc.
| The Large Magellanic Cloud - The third list of stars that belong to the Large Magellanic Cloud and a list of galactic stars Abstract image available at:http://adsabs.harvard.edu/abs/1981A&AS...46...13F
| Starlight polarization in the Magellanic cloud regions. Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1976A&AS...24..357S&db_key=AST
| UBV photometry for supergiants of the Large Magellanic Cloud Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1975A&A....43..345B&db_key=AST
| Additional observations of supergiants and foreground stars in the direction of the Large Magellanic Cloud Abstract image available at:http://adsabs.harvard.edu/abs/1973A&AS....9..447B
| Vitesses radiales dans la direction du Grand Nuage de Magellan Not Available
|
Yeni bir Makale Öner
Ýlgili Baðlantýlar
Yeni Bir Baðlantý Öner
sonraki gruplarýn üyesi:
|
Gözlemler ve gökölçümü verileri
Takýmyýldýz: | Masa |
Sað Açýklýk: | 05h30m15.92s |
Yükselim: | -70°49'46.5" |
Görünürdeki Parlaklýk: | 8.82 |
Uzaklýk: | 342.466 parsek |
özdevim Sað Açýklýk: | -1.3 |
özdevim Yükselim: | 3.6 |
B-T magnitude: | 10.253 |
V-T magnitude: | 8.939 |
Kataloglar ve belirtme:
|