Садржај
Слике
Уплоадјуј своје слике
DSS Images Other Images
Везани чланци
A New Color-Magnitude Diagram for 47 Tucanae: A Statistical Analysis We present a statistical analysis of color-magnitude diagrams of 47 Tucderived from original and archival BVI photometry that produces the mostprobable locus for single stars. After adopting E(B-V) = 0.04, we derivean apparent distance modulus (m - M) V = 13.375 andachieve good matches to the most probable locus in the [B - V, V],[V - I, I], and [B - I, I] planes with 12 Gyr, [?/Fe]= +0.3, [Fe/H] = -0.83 isochrones from the Victoria-Regina models.This metallicity is generally lower than recent spectroscopicallyderived estimates for the cluster, but it is reinforced by themain-sequence match with a sample of subdwarfs.Based in part on observations made with the European SouthernObservatory (ESO) telescopes and obtained from the ESO/ST-ECF ScienceArchive facility.
| The Geneva-Copenhagen survey of the solar neighbourhood. III. Improved distances, ages, and kinematics Context: Ages, chemical compositions, velocity vectors, and Galacticorbits for stars in the solar neighbourhood are fundamental test datafor models of Galactic evolution. The Geneva-Copenhagen Survey of theSolar Neighbourhood (Nordström et al. 2004; GCS), amagnitude-complete, kinematically unbiased sample of 16 682 nearby F andG dwarfs, is the largest available sample with complete data for starswith ages spanning that of the disk. Aims: We aim to improve theaccuracy of the GCS data by implementing the recent revision of theHipparcos parallaxes. Methods: The new parallaxes yield improvedastrometric distances for 12 506 stars in the GCS. We also use theparallaxes to verify the distance calibration for uvby? photometryby Holmberg et al. (2007, A&A, 475, 519; GCS II). We add newselection criteria to exclude evolved cool stars giving unreliableresults and derive distances for 3580 stars with large parallax errorsor not observed by Hipparcos. We also check the GCS II scales of T_effand [Fe/H] and find no need for change. Results: Introducing thenew distances, we recompute MV for 16 086 stars, and U, V, W,and Galactic orbital parameters for the 13 520 stars that also haveradial-velocity measurements. We also recompute stellar ages from thePadova stellar evolution models used in GCS I-II, using the new valuesof M_V, and compare them with ages from the Yale-Yonsei andVictoria-Regina models. Finally, we compare the observed age-velocityrelation in W with three simulated disk heating scenarios to show thepotential of the data. Conclusions: With these revisions, thebasic data for the GCS stars should now be as reliable as is possiblewith existing techniques. Further improvement must await consolidationof the T_eff scale from angular diameters and fluxes, and the Gaiatrigonometric parallaxes. We discuss the conditions for improvingcomputed stellar ages from new input data, and for distinguishingdifferent disk heating scenarios from data sets of the size andprecision of the GCS.Full Table 1 is only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/501/941
| Calibration of Strömgren uvby-H? photometry for late-type stars - a model atmosphere approach Context: The use of model atmospheres for deriving stellar fundamentalparameters, such as T_eff, log g, and [Fe/H], will increase as we findand explore extreme stellar populations where empirical calibrations arenot yet available. Moreover, calibrations for upcoming large satellitemissions of new spectrophotometric indices, similar to the uvby-H?system, will be needed. Aims: We aim to test the power oftheoretical calibrations based on a new generation of MARCS models bycomparisons with observational photomteric data. Methods: Wecalculated synthetic uvby-H? colour indices from synthetic spectra.A sample of 367 field stars, as well as stars in globular clusters, isused for a direct comparison of the synthetic indices versus empiricaldata and for scrutinizing the possibilities of theoretical calibrationsfor temperature, metallicity, and gravity. Results: We show thatthe temperature sensitivity of the synthetic (b-y) colour is very closeto its empirical counterpart, whereas the temperature scale based uponH? shows a slight offset. The theoretical metallicity sensitivityof the m1 index (and for G-type stars its combination withc_1) is somewhat higher than the empirical one, based upon spectroscopicdeterminations. The gravity sensitivity of the synthetic c1index shows satisfactory behaviour when compared to obervations of Fstars. For stars cooler than the sun, a deviation is significant in thec1-(b-y) diagram. The theoretical calibrations of (b-y),(v-y), and c1 seem to work well for Pop II stars and lead toeffective temperatures for globular cluster stars supporting recentclaims that atomic diffusion occurs in stars near the turnoff point ofNGC 6397. Conclusions: Synthetic colours of stellar atmospherescan indeed be used, in many cases, to derive reliable fundamentalstellar parameters. The deviations seen when compared to observationaldata could be due to incomplete linelists but are possibly also due tothe effects of assuming plane-parallell or spherical geometry and LTE.Model colours are only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/498/527
| Spectroscopic parameters for 451 stars in the HARPS GTO planet search program. Stellar [Fe/H] and the frequency of exo-Neptunes To understand the formation and evolution of solar-type stars in thesolar neighborhood, we need to measure their stellar parameters to highaccuracy. We present a catalogue of accurate stellar parameters for 451stars that represent the HARPS Guaranteed Time Observations (GTO)“high precision” sample. Spectroscopic stellar parameterswere measured using high signal-to-noise (S/N) spectra acquired with theHARPS spectrograph. The spectroscopic analysis was completed assumingLTE with a grid of Kurucz atmosphere models and the recent ARES code formeasuring line equivalent widths. We show that our results agree wellwith those ones presented in the literature (for stars in common). Wepresent a useful calibration for the effective temperature as a functionof the index color B-V and [Fe/H]. We use our results to study themetallicity-planet correlation, namely for very low mass planets. Theresults presented here suggest that in contrast to their joviancouterparts, neptune-like planets do not form preferentially aroundmetal-rich stars. The ratio of jupiter-to-neptunes is also an increasingfunction of stellar metallicity. These results are discussed in thecontext of the core-accretion model for planet formation.Based on observations collected at La Silla Observatory, ESO, Chile,with the HARPS spectrograph at the 3.6-m telescope (072.C-0488(E)). FullTables 1 and 3 are only available in electronic form at the CDS vianonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/487/373
| Metallicities and activities of southern stars Aims. We present the results from high-resolution spectroscopicmeasurements to determine metallicities and activities of bright starsin the southern hemisphere. Methods: We measured the iron abundances([Fe/H]'s) and chromospheric emission indices (log h{R}'{HK})of 353 solar-type stars with V = 7.5-9.5. [Fe/H] abundances aredetermined using a custom χ2 fitting procedure within alarge grid of Kurucz model atmospheres. The chromospheric activitieswere determined by measuring the amount of emission in the cores of thestrong Caii HK lines. Results: Our comparison of the metallicity sampleto other [Fe/H] determinations was found to agree at the ±0.05dex level for spectroscopic values and at the ±0.1 dex level forphotometric values. The distribution of chromospheric activities isdescribed by a bimodal distribution, agreeing with the conclusions fromother works. Also an analysis of Maunder minimum status was attempted,and it was found that 6 ± 4 stars in the sample could be in aMaunder minimum phase of their evolution and hence the Sun should onlyspend a few per cent of its main sequence lifetime in Maunder minimum.Based on observations made with the ESO telescopes at the La SillaParanal observatory under programme ID's 076.C-0578(B) and077.C-0192(A). Table 4 is only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/485/571
| Pulkovo compilation of radial velocities for 35495 stars in a common system. Not Available
| Metallicity and absolute magnitude calibrations for UBV photometry Calibrations are presented here for metallicity ([Fe/H]) in terms of theultraviolet excess, [δ(U - B) at B - V = 0.6, hereafterδ0.6], and also for the absolute visual magnitude(MV) and its difference with respect to the Hyades(ΔMHV) in terms of δ0.6 and(B - V), making use of high-resolution spectroscopic abundances from theliterature and Hipparcos parallaxes. The relation[Fe/H]-δ0.6 has been derived for dwarf plus turn-offstars, and also for dwarf, turn-off, plus subgiant stars classifiedusing the MV-(B - V)0 plane of Fig. 11, which iscalibrated with isochrones from Bergbusch & VandenBerg (and alsoVandenBerg & Clem). The [Fe/H]-δ0.6 relations inour equations (5) and (6) agree well with those of Carney, as can beseen from Fig. 5(a). Within the uncertainties, the zero-points,+0.13(+/-0.05) of equation (5) and +0.13(+/-0.04) of equation (6), arein good agreement with the photometric ones of Cameron and of Carney,and close to the spectroscopic ones of Cayrel et al. and of Boesgaard& Friel for the Hyades open cluster. Good quantitative agreementbetween our estimated [Fe/H] abundances with those from uvby-βphotometry and spectroscopic [Fe/H]spec values demonstratesthat our equation (6) can be used in deriving quality photometric metalabundances for field stars and clusters using UBV data from variousphotometric surveys.For dwarf and turn-off stars, a new hybrid MV calibration ispresented, based on Hipparcos parallaxes withσπ/π <= 0.1 and with a dispersion of +/-0.24in MV. This hybrid MV calibration containsδ0.6 and (B - V) terms, plus higher order cross-termsof these, and is valid for the ranges of +0.37 <= (B - V)0<= +0.88,- 0.10 <= δ0.6 <= +0.29 and 3.44<= MV <= 7.23. For dwarf and turn-off stars, therelation for ΔMHV is revised and updated interms of (B - V) and δ0.6, for the ranges of -0.10<= δ0.6 <= +0.29, and +0.49 <= (B -V)0 <= +0.89, again making use of Hipparcos parallaxeswith σπ/π <= 0.1. These parallaxes formetal-poor dwarf and turn-off stars in our sample reveal that thedifference of ΔMHV(B - V) relative to Hyadesat (B - V) = +0.70 should be 1.37mag, instead of the 1.58mag given byLaird et al. In general, Hipparcos parallaxes are larger thanground-based ones, causing a divergence of ourΔMHV(B - V,δ0.6) relation(the solid line in Fig. 15b), from the one of Laird et al. (the dashedline) for the range +0.10 <= δ0.6 <= +0.29 ourabsolute magnitudes are fainter, as has been confirmed for localsubdwarfs by Reid. Our final calibrations forΔMHV(B - V, δ0.6),equations (16) and (17), are third-order polynomials inδ0.6, pass through the origin, and provide photometricdistances in reasonable agreement with those obtained directly fromHipparcos parallaxes (Fig. 18).
| Contributions to the Nearby Stars (NStars) Project: Spectroscopy of Stars Earlier than M0 within 40 pc-The Southern Sample We are obtaining spectra, spectral types, and basic physical parametersfor the nearly 3600 dwarf and giant stars earlier than M0 in theHipparcos catalog within 40 pc of the Sun. Here we report on resultsfor 1676 stars in the southern hemisphere observed at Cerro TololoInter-American Observatory and Steward Observatory. These resultsinclude new, precise, homogeneous spectral types, basic physicalparameters (including the effective temperature, surface gravity, andmetallicity [M/H]), and measures of the chromospheric activity of ourprogram stars. We include notes on astrophysically interesting stars inthis sample, the metallicity distribution of the solar neighborhood, anda table of solar analogs. We also demonstrate that the bimodal nature ofthe distribution of the chromospheric activity parameterlogR'HK depends strongly on the metallicity, andwe explore the nature of the ``low-metallicity'' chromosphericallyactive K-type dwarfs.
| Effective temperature scale and bolometric corrections from 2MASS photometry We present a method to determine effective temperatures, angularsemi-diameters and bolometric corrections for population I and II FGKtype stars based on V and 2MASS IR photometry. Accurate calibration isaccomplished by using a sample of solar analogues, whose averagetemperature is assumed to be equal to the solar effective temperature of5777 K. By taking into account all possible sources of error we estimateassociated uncertainties to better than 1% in effective temperature andin the range 1.0-2.5% in angular semi-diameter for unreddened stars.Comparison of our new temperatures with other determinations extractedfrom the literature indicates, in general, remarkably good agreement.These results suggest that the effective temperaure scale of FGK starsis currently established with an accuracy better than 0.5%-1%. Theapplication of the method to a sample of 10 999 dwarfs in the Hipparcoscatalogue allows us to define temperature and bolometric correction (Kband) calibrations as a function of (V-K), [m/H] and log g. Bolometriccorrections in the V and K bands as a function of T_eff, [m/H] and log gare also given. We provide effective temperatures, angularsemi-diameters, radii and bolometric corrections in the V and K bandsfor the 10 999 FGK stars in our sample with the correspondinguncertainties.
| A Comparison of the Chemical Evolutionary Histories of the Galactic Thin Disk and Thick Disk Stellar Populations We have studied 23 long-lived G dwarfs that belong to the thin disk andthick disk stellar populations. The stellar data and analyses areidentical, reducing the chances for systematic errors in the comparisonsof the chemical abundance patterns in the two populations. Abundanceshave been derived for 24 elements: O, Na, Mg, Al, Si, Ca, Ti, Sc, V, Cr,Mn, Fe, Co, Ni, Cu, Zn, Sr, Y, Zr, Ba, La, Ce, Nd, and Eu. We find thatthe behavior of [α/Fe] and [Eu/Fe] versus [Fe/H] are quitedifferent for the two populations. As has long been known, the thin diskO, Mg, Si, Ca, and Ti ratios are enhanced relative to iron at the lowestmetallicities and decline toward solar values as [Fe/H] rises above-1.0. For the thick disk, the decline in [α/Fe] and [Eu/Fe] doesnot begin at [Fe/H]=-1.0, but at -0.4. Other elements share this samebehavior, including Sc, Co, and Zn, suggesting that at least in thechemical enrichment history of the thick disk, these elements weremanufactured in similar-mass stars. The heavy s-process elements Ba, La,Ce, and Nd are overabundant in the thin disk stars relative to the thickdisk stars. On the other hand, the constancy of the [Ba/Y] ratiosuggests that only one s-process site was manufacturing these elementsor, possibly, that the r-process was responsible for the bulk of thenucleosynthesis of these elements. We combine our results with otherstudies (Edvardsson et al., Prochaska et al., Bensby et al., and Reddyet al.), who had already found very similar trends, in order to furtherexplore the origin of the thick disk. The signs for an independent(parent galaxy) evolution of the thick disk are clear, in terms of thedifferent metallicities at which the [α/Fe] ratios begin todecline, as well as the ``step function'' behavior of some elements,including [Eu/Y], [Ba/Fe], and possibly [Cu/Fe], at [Fe/H]~-0.2.
| Chemical abundances in 43 metal-poor stars We have derived abundances of O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Fe,Ni, and Ba for 43 metal-poor field stars in the solar neighbourhood,most of them subgiants or turn-off-point stars with iron abundances[Fe/H] ranging from -0.4 to -3.0. About half of this sample has not beenspectroscopically analysed in detail before. Effective temperatures wereestimated from uvby photometry, and surface gravities primarily fromHipparcos parallaxes. The analysis is differential relative to the Sun,and was carried out with plane-parallel MARCS models. Various sources oferror are discussed and found to contribute a total error of about0.1-0.2 dex for most elements, while relative abundances, such as[Ca/Fe], are most probably more accurate. For the oxygen abundances,determined in an NLTE analysis of the 7774 Å triplet lines, theerrors may be somewhat larger. We made a detailed comparison withsimilar studies and traced the reasons for the, in most cases,relatively small differences. Among the results we find that [O/Fe]possibly increases beyond [Fe/H] = -1.0, though considerably less sothan in results obtained by others from abundances based on OH lines. Wedid not trace any tendency toward strong overionization of iron, andfind the excesses, relative to Fe and the Sun, of the α elementsMg, Si, and Ca to be smaller than those of O. We discuss someindications that also the abundances of different α elementsrelative to Fe vary and the possibility that some of the scatter aroundthe trends in abundances relative to iron may be real. This may supportthe idea that the formation of Halo stars occurred in smaller systemswith different star formation rates. We verify the finding by Gratton etal. (2003b, A&A, 406, 131) that stars that do not participate in therotation of the galactic disk show a lower mean and larger spread in [α/Fe] than stars participating in the general rotation. The latterstars also seem to show some correlation between [ α/Fe] androtation speed. We trace some stars with peculiar abundances, amongthese two Ba stars, HD 17072 and HD196944, the second already known to be rich in s elements.Finally we advocate that a spectroscopic study of a larger sample ofhalo stars with well-defined selection criteria is very important, inorder to add to the very considerable efforts that various groups havealready made.
| Chemical Composition in the Globular Cluster M71 from Keck HIRES Spectra of Turnoff Stars We have made observations with the Keck I telescope and HIRES at aresolution of ~45,000 of five nearly identical stars at the turnoff ofthe metal-rich globular cluster M71. We derive stellar parameters andabundances of several elements. Our mean Fe abundance,[Fe/H]=-0.80+/-0.02, is in excellent agreement with previous clusterdeterminations from both giants and near-turnoff stars. There is noclear evidence for any star-to-star abundance differences orcorrelations in our sample. Abundance ratios of the Fe peak elements(Cr, Ni) are similar to Fe. The turnoff stars in M71 have remarkablyconsistent enhancements of 0.2-0.3 dex in [Si/Fe], [Ca/Fe], and [Ti/Fe],like the red giants. Our [Mg/Fe] ratio is somewhat lower than thatsuggested by other studies. We compare our mean abundances for the fiveM71 stars with field stars of similar metallicity [Fe/H]: eight withhalo kinematics and 17 with disk kinematics. The abundances of theα-fusion products (Mg, Si, Ca, Ti) agree with both samples butseem a closer match to the disk stars. The Mg abundance in M71 is at thelower edge of the disk and halo samples. The neutron-capture elements, Yand Ba, are enhanced relative to solar in the M71 turnoff stars. Ourratio [Ba/Fe] is similar to that of the halo field stars but a factor of2 above that for the disk field stars. The important [Ba/Y] ratio issignificantly lower than M71 giant values; the precluster material mayhave been exposed to a higher neutron flux than the disk stars orself-enrichment has occurred subsequent to cluster star formation. TheNa content of the M71 turnoff stars is remarkably similar to that in thedisk field stars but more than a factor of 2 higher than the halo fieldstar sample. We find [Na/Fe]=+0.14+/-0.04 with a spread less than halfof that found in the red giants in M71. Excluding Mg, the lack ofintracluster α-element variations (turnoff vis-à-visgiants) suggests that the polluting material needed to explain theabundance patterns in M71 did not arise from explosive nucleosynthesisbut in a more traditional s-process environment such as AGB stars. Thedetermination of light s-peak abundances should reveal whether thispollution occurred before or after cluster formation.
| Abundance trends in kinematical groups of the Milky Way's disk We have compiled a large catalogue of metallicities and abundance ratiosfrom the literature in order to investigate abundance trends of severalalpha and iron peak elements in the thin disk and the thick disk of theGalaxy. The catalogue includes 743 stars with abundances of Fe, O, Mg,Ca, Ti, Si, Na, Ni and Al in the metallicity range -1.30 < [Fe/H]< +0.50. We have checked that systematic differences betweenabundances measured in the different studies were lower than randomerrors before combining them. Accurate distances and proper motions fromHipparcos and radial velocities from several sources have been retreivedfor 639 stars and their velocities (U, V, W) and galactic orbits havebeen computed. Ages of 322 stars have been estimated with a Bayesianmethod of isochrone fitting. Two samples kinematically representative ofthe thin and thick disks have been selected, taking into account theHercules stream which is intermediate in kinematics, but with a probabledynamical origin. Our results show that the two disks are chemicallywell separated, they overlap greatly in metallicity and both showparallel decreasing alpha elements with increasing metallicity, in theinterval -0.80 < [Fe/H] < -0.30. The Mg enhancement with respectto Fe of the thick disk is measured to be 0.14 dex. An even largerenhancement is observed for Al. The thick disk is clearly older than thethin disk with tentative evidence of an AMR over 2-3 Gyr and a hiatus instar formation before the formation of the thin disk. We do not observea vertical gradient in the metallicity of the thick disk. The Herculesstream has properties similar to that of the thin disk, with a widerrange of metallicity. Metal-rich stars assigned to the thick disk andsuper-metal-rich stars assigned to the thin disk appear as outliers inall their properties.
| Abundance correlations in mildly metal-poor stars. II. Light elements (C to Ca) Accurate relative abundances have been obtained for carbon, oxygen,sodium, aluminium, silicon, and calcium in a sample of mildly metal-poorstars. This analysis complements a previous study carried out by Jehinet al. ([CITE], A&A, 341, 241), which provided the basis for theEASE scenario. This scenario postulates that field metal-poor stars wereborn in self-enriched proto-globular cluster clouds. By furtherinvestigating the correlations between the different α-elementabundances, we propose a modified scenario for the formation ofintermediate metallicity stars, in which the stars exhibiting lower thanaverage α/Fe abundance ratios would form in low mass clouds,unable to sustain the formation of very massive stars (M 30~M_ȯ). Moreover, the carbon-to-iron ratio is found to decrease asone climbs the so-called Population IIb branch, i.e. when the s-elementabundance increases. In the framework of the EASE scenario, we interpretthis anticorrelation between the carbon and the s-element abundances asa signature of a hot bottom burning process in the metal-poor AGB starswhich expelled the matter subsequently accreted by our Population IIbstars.Based on observations collected at the European Southern Observatory, LaSilla, Chile (ESO Programmes 56.E-0384, 57.E-0400 and 59.E-0257).
| Stellar Chemical Signatures and Hierarchical Galaxy Formation To compare the chemistries of stars in the Milky Way dwarf spheroidal(dSph) satellite galaxies with stars in the Galaxy, we have compiled alarge sample of Galactic stellar abundances from the literature. Whenkinematic information is available, we have assigned the stars tostandard Galactic components through Bayesian classification based onGaussian velocity ellipsoids. As found in previous studies, the[α/Fe] ratios of most stars in the dSph galaxies are generallylower than similar metallicity Galactic stars in this extended sample.Our kinematically selected stars confirm this for the Galactic halo,thin-disk, and thick-disk components. There is marginal overlap in thelow [α/Fe] ratios between dSph stars and Galactic halo stars onextreme retrograde orbits (V<-420 km s-1), but this is notsupported by other element ratios. Other element ratios compared in thispaper include r- and s-process abundances, where we find a significantoffset in the [Y/Fe] ratios, which results in a large overabundance in[Ba/Y] in most dSph stars compared with Galactic stars. Thus, thechemical signatures of most of the dSph stars are distinct from thestars in each of the kinematic components of the Galaxy. This resultrules out continuous merging of low-mass galaxies similar to these dSphsatellites during the formation of the Galaxy. However, we do not ruleout very early merging of low-mass dwarf galaxies, since up to one-halfof the most metal-poor stars ([Fe/H]<=-1.8) have chemistries that arein fair agreement with Galactic halo stars. We also do not rule outmerging with higher mass galaxies, although we note that the LMC and theremnants of the Sgr dwarf galaxy are also chemically distinct from themajority of the Galactic halo stars. Formation of the Galaxy's thickdisk by heating of an old thin disk during a merger is also not ruledout; however, the Galaxy's thick disk itself cannot be comprised of theremnants from a low-mass (dSph) dwarf galaxy, nor of a high-mass dwarfgalaxy like the LMC or Sgr, because of differences in chemistry.The new and independent environments offered by the dSph galaxies alsoallow us to examine fundamental assumptions related to thenucleosynthesis of the elements. The metal-poor stars ([Fe/H]<=-1.8)in the dSph galaxies appear to have lower [Ca/Fe] and [Ti/Fe] than[Mg/Fe] ratios, unlike similar metallicity stars in the Galaxy.Predictions from the α-process (α-rich freeze-out) would beconsistent with this result if there have been a lack of hypernovae indSph galaxies. The α-process could also be responsible for thevery low Y abundances in the metal-poor stars in dSph's; since [La/Eu](and possibly [Ba/Eu]) are consistent with pure r-process results, thelow [Y/Eu] suggests a separate r-process site for this light(first-peak) r-process element. We also discuss SNe II rates and yieldsas other alternatives, however. In stars with higher metallicities([Fe/H]>=-1.8), contributions from the s-process are expected; [(Y,La, and Ba)/Eu] all rise as expected, and yet [Ba/Y] is still muchhigher in the dSph stars than similar metallicity Galactic stars. Thisresult is consistent with s-process contributions from lower metallicityAGB stars in dSph galaxies, and is in good agreement with the slowerchemical evolution expected in the low-mass dSph galaxies relative tothe Galaxy, such that the build-up of metals occurs over much longertimescales. Future investigations of nucleosynthetic constraints (aswell as galaxy formation and evolution) will require an examination ofmany stars within individual dwarf galaxies.Finally, the Na-Ni trend reported in 1997 by Nissen & Schuster isconfirmed in Galactic halo stars, but we discuss this in terms of thegeneral nucleosynthesis of neutron-rich elements. We do not confirm thatthe Na-Ni trend is related to the accretion of dSph galaxies in theGalactic halo.
| The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of 14 000 F and G dwarfs We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989
| Oxygen line formation in late-F through early-K disk/halo stars. Infrared O I triplet and [O I] lines In order to investigate the formation of O I 7771-5 and [O I] 6300/6363lines, extensive non-LTE calculations for neutral atomic oxygen werecarried out for wide ranges of model atmosphere parameters, which areapplicable to early-K through late-F halo/disk stars of variousevolutionary stages.The formation of the triplet O I lines was found to be well described bythe classical two-level-atom scattering model, and the non-LTEcorrection is practically determined by the parameters of theline-transition itself without any significant relevance to the detailsof the oxygen atomic model. This simplifies the problem in the sensethat the non-LTE abundance correction is essentially determined only bythe line-strength (Wlambda ), if the atmospheric parametersof Teff, log g, and xi are given, without any explicitdependence of the metallicity; thus allowing a useful analytical formulawith tabulated numerical coefficients. On the other hand, ourcalculations lead to the robust conclusion that LTE is totally valid forthe forbidden [O I] lines.An extensive reanalysis of published equivalent-width data of O I 7771-5and [O I] 6300/6363 taken from various literature resulted in theconclusion that, while a reasonable consistency of O I and [O I]abundances was observed for disk stars (-1 <~ [Fe/H] <~ 0), theexistence of a systematic abundance discrepancy was confirmed between OI and [O I] lines in conspicuously metal-poor halo stars (-3 <~[Fe/H] <~ -1) without being removed by our non-LTE corrections, i.e.,the former being larger by ~ 0.3 dex at -3 <~ [Fe/H] <~ -2.An inspection of the parameter-dependence of this discordance indicatesthat the extent of the discrepancy tends to be comparatively lessenedfor higher Teff/log g stars, suggesting the preference ofdwarf (or subgiant) stars for studying the oxygen abundances ofmetal-poor stars.Tables 2, 5, and 7 are only available in electronic form, at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/402/343 and Table\ref{tab3} is only available in electronic form athttp://www.edpsciences.org
| Statistical cataloging of archival data for luminosity class IV-V stars. II. The epoch 2001 [Fe/H] catalog This paper describes the derivation of an updated statistical catalog ofmetallicities. The stars for which those metallicities apply are ofspectral types F, G, and K, and are on or near the main sequence. Theinput data for the catalog are values of [Fe/H] published before 2002February and derived from lines of weak and moderate strength. Theanalyses used to derive the data have been based on one-dimensional LTEmodel atmospheres. Initial adjustments which are applied to the datainclude corrections to a uniform temperature scale which is given in acompanion paper (see Taylor \cite{t02}). After correction, the data aresubjected to a statistical analysis. For each of 941 stars considered,the results of that analysis include a mean value of [Fe/H], an rmserror, an associated number of degrees of freedom, and one or moreidentification numbers for source papers. The catalog of these resultssupersedes an earlier version given by Taylor (\cite{t94b}).Catalog is only available in electronic form at the CDS via anonymousftp cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/398/731
| Statistical cataloging of archival data for luminosity class IV-V stars. I. The epoch 2001 temperature catalog This paper is one of a pair in which temperatures and metallicitycatalogs for class IV-V stars are considered. The temperature catalogdescribed here is derived from a calibration based on stellar angulardiameters. If published calibrations of this kind are compared by usingcolor-index transformations, temperature-dependent differences among thecalibrations are commonly found. However, such differences are minimizedif attention is restricted to calibrations based on Johnson V-K. Acalibration of this sort from Di Benedetto (\cite{dib98}) is thereforetested and adopted. That calibration is then applied to spectroscopicand photometric data, with the latter predominating. Cousins R-Iphotometry receives special attention because of its high precision andlow metallicity sensitivity. Testing of temperatures derived from thecalibration suggests that their accuracy and precision are satisfactory,though further testing will be warranted as new results appear. Thesetemperatures appear in the catalog as values of theta equiv5040/T(effective). Most of these entries are accompanied by measured orderived values of Cousins R-I. Entries are given for 951 stars.Catalog is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/398/721
| Europium abundances in F and G disk dwarfs Europium abundances for 74 F and G dwarf stars of the galactic disk havebeen determined from the 4129.7 Å Eu II line. The stars wereselected from the sample of Edvardsson et al. (1993) and [Eu/Fe] shows asmaller scatter and a slightly weaker trend with [Fe/H] than found byWoolf et al. (1995). The data of the two analyses are homogenized andmerged. We also discuss the adopted effective temperature scale. Basedon observations carried out at the European Southern Observatory, LaSilla, Chile. Tables 2 and 6 are only available in electronic form atthe CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcal?J/A+A/381/500
| Catalogue of [Fe/H] determinations for FGK stars: 2001 edition The catalogue presented here is a compilation of published atmosphericparameters (Teff, log g, [Fe/H]) obtained from highresolution, high signal-to-noise spectroscopic observations. This newedition has changed compared to the five previous versions. It is nowrestricted to intermediate and low mass stars (F, G and K stars). Itcontains 6354 determinations of (Teff, log g, [Fe/H]) for3356 stars, including 909 stars in 79 stellar systems. The literature iscomplete between January 1980 and December 2000 and includes 378references. The catalogue is made up of two tables, one for field starsand one for stars in galactic associations, open and globular clustersand external galaxies. The catalogue is distributed through the CDSdatabase. Access to the catalogue with cross-identification to othersets of data is also possible with VizieR (Ochsenbein et al.\cite{och00}). The catalogue (Tables 1 and 2) is only available inelectronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr(130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/373/159 and VizieRhttp://vizier.u-strasbg.fr/.
| The abundance distribution of elements captured by neutrons in metal-poor stars Based on our model to compute the heavy element abundances in metal-poorstars, the authors study the heavy-element abundance distributions in 21metal-poor stars published in 1999. The results show that the heavierelements agree well with the observed data, but the lighter elementsdeviate from them, and this further shows that the heavier elementabundances from different nucleosynthesis processes in metal-poorsurroundings are similar to those from corresponding processes in thesolar system but the contribution ratios are different, and the lighterelement abundances deviate from that of the solar system. At the sametime the results suggest the nucleosynthesis sites of the lighter andheavier elements are different, namely they have differentnucleosynthesis mechanisms. In this paper, the authors especiallydiscuss the influence of the observed abundance errors on the componentcoefficients of different nucleosynthesis processes.
| Kinematics of Metal-poor Stars in the Galaxy. II. Proper Motions for a Large Nonkinematically Selected Sample We present a revised catalog of 2106 Galactic stars, selected withoutkinematic bias and with available radial velocities, distance estimates,and metal abundances in the range -4.0<=[Fe/H]<=0.0. This updateof the 1995 Beers & Sommer-Larsen catalog includes newly derivedhomogeneous photometric distance estimates, revised radial velocitiesfor a number of stars with recently obtained high-resolution spectra,and refined metallicities for stars originally identified in the HKobjective-prism survey (which account for nearly half of the catalog)based on a recent recalibration. A subset of 1258 stars in this cataloghave available proper motions based on measurements obtained with theHipparcos astrometry satellite or taken from the updated AstrographicCatalogue (second epoch positions from either the Hubble Space TelescopeGuide Star Catalog or the Tycho Catalogue), the Yale/San Juan SouthernProper Motion Catalog 2.0, and the Lick Northern Proper Motion Catalog.Our present catalog includes 388 RR Lyrae variables (182 of which arenewly added), 38 variables of other types, and 1680 nonvariables, withdistances in the range 0.1 to 40 kpc.
| Abundances of light elements in metal-poor stars. III. Data analysis and results We present the results of the analysis of an extensive set of new andliterature high quality data concerning Fe, C, N, O, Na, and Mg. Thisanalysis exploited the T_eff scale determined in Gratton et al. (1996a),and the non-LTE abundance corrections computed in Gratton et al.(1999a). Results obtained with various abundance indices are discussedand compared. Detailed comparison with models of galactic chemicalevolution will be presented in future papers of this series. Our non-LTEanalysis yields the same O abundances from both permitted and forbiddenlines for stars with T_eff >4600 K, in agreement with King (1993),but not with other studies using a lower T_eff -scale for subdwarfs.However, we obtain slightly smaller O abundances for the most luminousmetal-poor field stars than for fainter stars of similar metallicities,an effect attributed to inadequacies of the adopted model atmospheres(Kurucz 1992, with overshooting) for cool stars. We find a nearlyconstant O overundance in metal-poor stars ([Fe/H]<-0.8), at a meanvalue of 0.46+/- 0.02 dex (sigma =0.12, 32 stars), with only a gentleslope with [Fe/H] ( ~ -0.1); this result is different from the steeperslope recently obtained using OH band in the near UV. If only bonafideunmixed stars are considered, C abundances scale with Fe ones (i.e.[C/Fe]~ 0) down to [Fe/H] ~ -2.5. Due to our adoption of a differentT_eff scale, we do not confirm the slight C excess in the most metalpoor disk dwarfs (-0.8<[Fe/H]<-0.4) found in previousinvestigations. Na abundances scale as Fe ones in the high metallicityregime, while metal-poor stars present a Na underabundance. None of thefield stars analyzed belong to the group of O-poor and Na-rich starsobserved in globular clusters. Na is deficient with respect to Mg inhalo and thick disk stars; within these populations, Na deficiency maybe a slow function of [Mg/H]. Solar [Na/Mg] ratios are obtained for thindisk stars. Tables~ 2 to 9 are only available in electronic form at theCDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strabg.fr/Abstract.html
| Models for Old, Metal-poor Stars with Enhanced α-Element Abundances. I. Evolutionary Tracks and ZAHB Loci; Observational Constraints Stellar evolutionary tracks have been computed for 17 [Fe/H] values from-2.31 to -0.30 assuming, in each case, [α/Fe]=0.0, 0.3, and 0.6.The helium abundance was assumed to vary from Y=0.2352 at [Fe/H]=-2.31to Y=0.2550 at [Fe/H]=-0.30 and held constant for the different choicesof [α/Fe] at a fixed iron content. Masses in the range0.5<=Msolar<=1.0, in 0.1 Msolarsteps, were generally considered, though sequences for higher massvalues were computed, as necessary, to ensure that isochrones as``young'' as 8 Gyr could be generated for each grid. All of the stellarmodels are based on an equation of state that treats nonideal effects,the latest nuclear reaction and neutrino cooling rates, and opacitiesthat were computed specifically for the adopted chemical mixtures. Thetracks were extended to the tip of the giant branch or to an age of 30Gyr, whichever came first, and zero-age horizontal-branch (ZAHB) lociwere constructed using the helium core masses and chemical profiles fromappropriate red giant precursors. Selected models have been comparedwith those computed by A. V. Sweigart, for the same masses and chemicalcompositions, to demonstrate that the results obtained from two entirelyindependent stellar evolution codes agree well with one another whenvery similar input physics is assumed. In the case of extremelymetal-deficient stars, an enhancement in the abundance of theα-elements causes a single, fairly significant bump in the opacityat a temperature just above 106 K, which is caused byabsorption processes involving the K shell of oxygen. This peak becomessteadily more pronounced as the overall metallicity increases and asecond bump, arising from the L edges of Ne, Mg, and Si, eventuallyappears near logT=5.6. As far as the tracks and isochrones areconcerned, we find that, as already reported by others, it is possibleto mimic the computations for [α/Fe]>0 remarkably well by thosefor scaled-solar mixes simply by requiring the total mass-fractionabundance of the heavy elements, Z, to be the same. However, this resultholds only for metallicities significantly less than solar. Above[Fe/H]>~-0.8, tracks and isochrones for enhanced α-elementmixtures begin to have systematically hotter/bluer turnoffs and redgiant branches than those for scaled-solar mixtures of the heavyelements. Also addressed is the extent to which our models satisfy theconstraints posed by the local subdwarfs, the distances of which arebased on Hipparcos parallax measurements. Our analysis suggests that thepredicted metallicity dependence of the location of the lower mainsequence on the C-M diagram is in good agreement with the observeddependence. In fact, we do not find any compelling evidence from thelocal Population II calibrators that the colors of our models requiresignificant adjustments. In further support of our calculations, we findthat, both in zero point and slope, the computed giant branches on the(Mbol,logTeff)-plane agree well with thoseinferred for globular clusters from observations in the infrared.Moreover, our ZAHB models have luminosities that are just outside the 1σ error bars of the mean MV's inferred for RR Lyraestars from Baade-Wesselink, statistical parallax, and trigonometricparallax studies. Lower helium contents or higher α-elementabundances or an increase in the conductive opacities are among thepossible ways of reducing the differences that remain. To facilitatecomparisons with observations, the tracks/ZAHBs are provided withpredicted BV(RI)C photometry.
| A Consistency Test of Spectroscopic Gravities for Late-Type Stars Chemical analyses of late-type stars are usually carried out followingthe classical recipe: LTE line formation and homogeneous,plane-parallel, flux-constant, and LTE model atmospheres. We reviewdifferent results in the literature that have suggested significantinconsistencies in the spectroscopic analyses, pointing out thedifficulties in deriving independent estimates of the stellarfundamental parameters and hence, detecting systematic errors. Thetrigonometric parallaxes measured by the Hipparcos mission provideaccurate appraisals of the stellar surface gravity for nearby stars,which are used here to check the gravities obtained from thephotospheric iron ionization balance. We find an approximate agreementfor stars in the metallicity range -1.0<=[Fe/H]<=0, but thecomparison shows that the differences between the spectroscopic andtrigonometric gravities decrease toward lower metallicities for moremetal-deficient dwarfs (-2.5<=[Fe/H]<=-1.0), which casts a shadowupon the abundance analyses for extreme metal-poor stars that make useof the ionization equilibrium to constrain the gravity. The comparisonwith the strong-line gravities derived by Edvardsson and Fuhrmannconfirms that this method provide systematically larger gravities thanthe ionization balance. The strong-line gravities get closer to thephysical ones for the stars analyzed by Fuhrmann, but they are evenfurther away than the iron ionization gravities for the stars of lowergravities in Edvardsson's sample. The confrontation of the deviations ofthe iron ionization gravities in metal-poor stars, reported here withdepartures from the excitation balance found in the literature, showthat they are likely to be induced by the same physical mechanism.
| The origin of carbon, investigated by spectral analysis of solar-type stars in the Galactic Disk Abundance analysis of carbon has been performed in a sample of 80 late Fand early G type dwarf stars in the metallicity range{-1.06<=[Fe/H]<=0.26} using the forbidden [C i] line at 8727Angstroms. This line is presumably less sensitive to temperature,atmospheric structure and departures from LTE than alternative carboncriteria. We find that {[C/Fe]} decreases slowly with increasing{[Fe/H]} with an overall slope of -0.17+/-0.03. Our results areconsistent with carbon enrichment by superwinds of metal-rich massivestars but inconsistent with a main origin of carbon in low-mass stars.This follows in particular from a comparison between the relation of{[C/O]} with metallicity for the Galactic stars and the correspondingrelation observed for dwarf irregular galaxies. The significance ofintermediate-mass stars for the production of carbon in the Galaxy isstill somewhat unclear. Based on observations carried out at theEuropean Southern Observatory, La Silla, Chile.
| Abundance correlations in mildly metal-poor stars Accurate relative abundances have been obtained for a sample of 21mildly metal-poor stars from the analysis of high resolution and highsignal-to-noise spectra. In order to reach the highest coherence andinternal precision, lines with similar dependency on the stellaratmospheric parameters were selected, and the analysis was carried outin a strictly differential way within the sample. With these accurateresults, correlations between relative abundances have been searchedfor, with a special emphasis on the neutron capture elements. Thisanalysis shows that the r elements are closely correlated to the alphaelements, which is in agreement with the generally accepted idea thatthe r-process takes place during the explosion of massive stars. Thesituation is more complex as far as the s elements are concerned. Theirrelation with the alpha elements is not linear. In a first group ofstars, the relative abundance of the s elements increases only slightlywith the alpha elements overabundance until the latter reaches a maximumvalue. For the second group, the s elements show a rather large range ofenhancement and a constant (and maximum) value of the alpha elementsoverabundance. This peculiar behaviour leads us to distinguish betweentwo sub-populations of metal-poor stars, namely Pop IIa (first group)and Pop IIb (second group). We suggest a scenario of formation ofmetal-poor stars based on two distinct phases of chemical enrichment, afirst phase essentially consisting in supernova explosions of massivestars, and a second phase where the enrichment is provided by stellarwinds from intermediate mass stars. More specifically, we assume thatall thick disk and field halo stars were born in globular clusters, fromwhich they escaped, either during an early disruption of the cluster(Pop IIa) or, later, through an evaporation process (Pop IIb). Based onobservations obtained at the European Southern Observatory, La Silla,Chile.
| A Multiplicity Survey of Chromospherically Active and Inactive Stars Surveys of three samples of solar-type stars, segregated bychromospheric emission level, were made to determine their multiplicityfractions and to investigate the evolution of multiplicity with age. Intotal, 245 stars were searched for companions with DeltaV <= 3.0 andseparations of 0.035" to 1.08" using optical speckle interferometry. Byincorporating the visual micrometer survey for duplicity of theLamontHussey Observatory, the angular coverage was extended to 5.0" withno change in the DeltaV limit. This magnitude difference allows massratios of 0.63 and larger to be detected throughout a search region of2-127 AU for the stars observed. The 84 primaries observed in thechromospherically active sample are presumably part of a youngpopulation and are found to have a multiplicity fraction of 17.9% +/-4.6%. The sample of 118 inactive, presumably older, primaries wereselected and observed using identical methods and are found to have amultiplicity fraction of only 8.5% +/- 2.7%. Given the known linkbetween chromospheric activity and age, these results tentatively implya decreasing stellar multiplicity fraction from 1 to 4 Gyr, theapproximate ages of the two samples. Finally, only two of the 14 veryactive primaries observed were found to have a companion meeting thesurvey detection parameters. In this case, many of the systems areeither very young, or close, RS CVn type multiples that are unresolvableusing the techniques employed here.
| Metallicity effects on the chromospheric activity-age relation for late-type dwarfs We show that there is a relationship between the age excess, defined asthe difference between the stellar isochrone and chromospheric ages, andthe metallicity as measured by the index [Fe/H] for late-type dwarfs.The chromospheric age tends to be lower than the isochrone age formetal-poor stars, and the opposite occurs for metal-rich objects. Wesuggest that this could be an effect of neglecting the metallicitydependence of the calibrated chromospheric emission-age relation. Wepropose a correction to account for this dependence. We also investigatethe metallicity distributions of these stars, and show that there aredistinct trends according to the chromospheric activity level. Inactivestars have a metallicity distribution which resembles the metallicitydistribution of solar neighbourhood stars, while active stars appear tobe concentrated in an activity strip on the logR'_HKx[Fe/H] diagram. Weprovide some explanations for these trends, and show that thechromospheric emission-age relation probably has different slopes on thetwo sides of the Vaughan-Preston gap.
|
Додај нови чланак
Линкови у сродству са темом
Додај нови линк
Чланови следећих група \:
|
Посматрања и Астрометриски подаци
Сазвежђа: | Једра |
Ректацензија: | 09h07m56.58s |
Deклинација: | -50°28'56.8" |
Apparent магнитуда: | 7.717 |
Даљина: | 39.746 parsecs |
Proper motion RA: | -64.9 |
Proper motion Dec: | -132.1 |
B-T magnitude: | 8.398 |
V-T magnitude: | 7.774 |
Каталог и designations:
|