Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

NGC 1777


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Physical parameters of 15 intermediate-age LMC clusters from modelling of HST colour-magnitude diagrams
Aims.We analyzed HST/WFPC2 colour-magnitude diagrams (CMDs) of 15populous Large Magellanic Cloud (LMC) stellar clusters with ages between~0.3 Gyr and ~3 Gyr. These (V, B-V) CMDs are photometrically homogeneousand typically reach V ˜ 22. Accurate and self-consistent physicalparameters (age, metallicity, distance modulus and reddening) wereextracted for each cluster by comparing the observed CMDs with syntheticones. Methods: These determinations involved simultaneous statisticalcomparisons of the main-sequence fiducial line and the red clumpposition, offering objective and robust criteria to determine the bestmodels. The models explored a regular grid in the parameter spacecovered by previous results found in the literature. Control experimentswere used to test our approach and to quantify formal uncertainties. Results: In general, the best models show a satisfactory fit to thedata, constraining well the physical parameters of each cluster. Theage-metallicity relation derived by us presents a lower spread thansimilar results found in the literature for the same clusters. Ourresults are in accordance with the published ages for the oldestclusters, but reveal a possible underestimation of ages by previousauthors for the youngest clusters. Our metallicity results in generalagree with the ones based on spectroscopy of giant stars and with recentworks involving CMD analyses. The derived distance moduli implied by themost reliable solutions, correlate with the reddening values, asexpected from the non-negligible three-dimensional distribution of theclusters within the LMC. Conclusions: .The inferred spatialdistribution for these clusters is roughly aligned with the LMC disk,being also more scattered than recent numerical predictions, indicatingthat they were not formed in the LMC disk. The set of ages andmetallicities homogeneously derived here can be used to calibrateintegrated light studies applied to distant galaxies.

A Database of 2MASS Near-Infrared Colors of Magellanic Cloud Star Clusters
The (rest-frame) near-IR domain contains important stellar populationdiagnostics and is often used to estimate masses of galaxies at low, aswell as high, redshifts. However, many stellar population models arestill relatively poorly calibrated in this part of the spectrum. Toallow an improvement of this calibration we present a new database ofintegrated near-IR JHKs magnitudes for 75 star clusters inthe Magellanic Clouds, using the Two Micron All Sky Survey (2MASS). Themajority of the clusters in our sample have robust age and metallicityestimates from color-magnitude diagrams available in the literature, andpopulate a range of ages from 10 Myr to 15 Gyr and a range in [Fe/H]from -2.17 to +0.01 dex. A comparison with matched star clusters in the2MASS Extended Source Catalog (XSC) reveals that the XSC only provides agood fit to the unresolved component of the cluster stellar population.We also compare our results with the often-cited single-channel JHKphotometry of Persson and coworkers and find significant differences,especially for their 30" diameter apertures, up to ~2.5 mag in the Kband, more than 1 mag in J-K, and up to 0.5 mag in H-K. Usingsimulations to center apertures based on maximum light throughput (asperformed by Persson et al.), we show that these differences can beattributed to near-IR-bright cluster stars (e.g., carbon stars) locatedaway from the true center of the star clusters. The wide age andmetallicity coverage of our integrated JHKs photometry sampleconstitute a fundamental data set for testing population synthesis modelpredictions and for direct comparison with near-IR observations ofdistant stellar populations.

Resolved Massive Star Clusters in the Milky Way and Its Satellites: Brightness Profiles and a Catalog of Fundamental Parameters
We present a database of structural and dynamical properties for 153spatially resolved star clusters in the Milky Way, the Large and SmallMagellanic Clouds, and the Fornax dwarf spheroidal. This databasecomplements and extends others in the literature, such as those ofHarris and Mackey & Gilmore. Our cluster sample comprises 50 ``youngmassive clusters'' in the LMC and SMC, and 103 old globular clustersbetween the four galaxies. The parameters we list include central andhalf-light-averaged surface brightnesses and mass densities; core andeffective radii; central potentials, concentration parameters, and tidalradii; predicted central velocity dispersions and escape velocities;total luminosities, masses, and binding energies; central phase-spacedensities; half-mass relaxation times; and ``κ-space'' parameters.We use publicly available population-synthesis models to computestellar-population properties (intrinsic B-V colors, reddenings, andV-band mass-to-light ratios) for the same 153 clusters plus another 63globulars in the Milky Way. We also take velocity-dispersionmeasurements from the literature for a subset of 57 (mostly old)clusters to derive dynamical mass-to-light ratios for them, showing thatthese compare very well to the population-synthesis predictions. Thecombined data set is intended to serve as the basis for futureinvestigations of structural correlations and the fundamental plane ofmassive star clusters, including especially comparisons between thesystemic properties of young and old clusters.The structural and dynamical parameters are derived from fitting threedifferent models-the modified isothermal sphere of King; an alternatemodified isothermal sphere based on the ad hoc stellar distributionfunction of Wilson; and asymptotic power-law models withconstant-density cores-to the surface-brightness profile of eachcluster. Surface-brightness data for the LMC, SMC, and Fornax clustersare based in large part on the work of Mackey & Gilmore, but includesignificant supplementary data culled from the literature and importantcorrections to Mackey & Gilmore's V-band magnitude scale. Theprofiles of Galactic globular clusters are taken from Trager et al. Weaddress the question of which model fits each cluster best, finding inthe majority of cases that the Wilson models-which are spatially moreextended than King models but still include a finite, ``tidal'' cutoffin density-fit clusters of any age, in any galaxy, as well as or betterthan King models. Untruncated, asymptotic power laws often fit about aswell as Wilson models but can be significantly worse. We argue that theextended halos known to characterize many Magellanic Cloud clusters maybe examples of the generic envelope structure of self-gravitating starclusters, not just transient features associated strictly with youngage.

Near-infrared surface brightness fluctuations and optical colours of Magellanic star clusters
This work continues our efforts to calibrate model surface brightnessfluctuation luminosities for the study of unresolved stellarpopulations, through a comparison with the data of Magellanic Cloud starclusters. We present here the relation between absoluteKs-band fluctuation magnitude and (V-I) integrated colour,using data from the Two-Micron All-Sky Survey (2MASS) and the DeepNear-Infrared Southern Sky Survey (DENIS), and from the literature. Wecompare the star cluster sample with the sample of early-type galaxiesand spiral bulges studied by Liu et al. We find that intermediate-age toold star clusters lie along a linear correlation with the same slope,within the errors, of that defined by the galaxies in the versus (V-I)diagram. While the calibration by Liu et al. was determined in thecolour range 1.05 < (V-IC)0 < 1.25, oursholds in the interval . This implies, according to Bruzual-Charlot andMouhcine-Lançon models, that the star clusters and the lateststar formation bursts in the galaxies and bulges constitute an agesequence. At the same time, a slight offset between the galaxies and thestar clusters [the latter are ~0.7 mag fainter than the former at agiven value of (V-I)], caused by the difference in metallicity ofroughly a factor of 2, confirms that the versus (V-I) plane maycontribute to break the age-metallicity degeneracy in intermediate-ageand old stellar populations. The confrontation between models and galaxydata also suggests that galaxies with Ks fluctuationmagnitudes that are brighter than predicted, given their (V-I) colour,might be explained in part by longer lifetimes of thermally pulsingasymptotic giant branch stars. A preliminary comparison between the H2MASS data of the Magellanic star clusters and the sample of 47early-type galaxies and spiral bulges observed by Jensen et al. throughthe F160WHubble Space Telescope filter leads to the same basicconclusions: galaxies and star clusters lie along correlations with thesame slope, and there is a slight offset between the star cluster sampleand the galaxies, caused by their different metallicities. Magellanicstar clusters are single populations, while galaxies are compositestellar systems; moreover, the objects analysed live in differentenvironments. Therefore, our findings mean that the relationship betweenfluctuation magnitudes in the near-infrared, and (V-I) might be a fairlyrobust tool for the study of stellar population ages and metallicities,could provide additional constraints on star formation histories, andaid in the calibration of near-infrared surface brightness fluctuationsfor cosmological distance measurements.

Infrared Surface Brightness Fluctuations of Magellanic Star Clusters
We present surface brightness fluctuations (SBFs) in the near-IR for 191Magellanic star clusters available in the Second Incremental and All SkyData releases of the Two Micron All Sky Survey (2MASS) and compare themwith SBFs of Fornax Cluster galaxies and with predictions from stellarpopulation models as well. We also construct color-magnitude diagrams(CMDs) for these clusters using the 2MASS Point Source Catalog (PSC).Our goals are twofold. The first is to provide an empirical calibrationof near-IR SBFs, given that existing stellar population synthesis modelsare particularly discrepant in the near-IR. Second, whereas mostprevious SBF studies have focused on old, metal-rich populations, thisis the first application to a system with such a wide range of ages(~106 to more than 1010 yr, i.e., 4 orders ofmagnitude), at the same time that the clusters have a very narrow rangeof metallicities (Z~0.0006-0.01, i.e., 1 order of magnitude only). Sincestellar population synthesis models predict a more complex sensitivityof SBFs to metallicity and age in the near-IR than in the optical, thisanalysis offers a unique way of disentangling the effects of age andmetallicity. We find a satisfactory agreement between models and data.We also confirm that near-IR fluctuations and fluctuation colors aremostly driven by age in the Magellanic cluster populations and that inthis respect they constitute a sequence in which the Fornax Clustergalaxies fit adequately. Fluctuations are powered by red supergiantswith high-mass precursors in young populations and by intermediate-massstars populating the asymptotic giant branch in intermediate-agepopulations. For old populations, the trend with age of both fluctuationmagnitudes and colors can be explained straightforwardly by evolution inthe structure and morphology of the red giant branch. Moreover,fluctuation colors display a tendency to redden with age that can befitted by a straight line. For the star clusters only,(H-Ks)=(0.21+/-0.03)log(age)-(1.29+/-0.22) once galaxies areincluded, (H-Ks)=(0.20+/-0.02)log(age)-(1.25+/-0.16).Finally, we use for the first time a Poissonian approach to establishthe error bars of fluctuation measurements, instead of the customaryMonte Carlo simulations.This research has made use of the NASA/ IPAC Infrared Science Archive,which is operated by the Jet Propulsion Laboratory, California Instituteof Technology, under contract with the National Aeronautics and SpaceAdministration.

Analyzing Starbursts Using Magellanic Cloud Star Clusters as Simple Stellar Populations
Integrated spectra have been obtained of 31 star clusters in theMagellanic Clouds (MC) and of four Galactic globular clusters. Thespectra cover the wavelength range 3500-4700 Å at a resolution of3.2 Å FWHM. The MC clusters primarily cover the age range fromless than 108 to about 3 Gyr and hence are well-suited to anempirical study of aging poststarburst stellar populations. Anage-dating method is presented that relies on two spectral absorptionfeature indices, Hδ/Fe I λ4045 and Ca II, as well as anindex measuring the strength of the Balmer discontinuity. We compare thebehavior of the spectral indices in the observed integrated spectra ofthe MC clusters with that of indices generated from theoreticalevolutionary synthesis models of varying age and metal abundance. Thesynthesis models are based on those of Worthey, when coupled with thecombination of an empirical library of stellar spectra by Jones for thecooler stars and synthetic spectra, generated from Kurucz modelatmospheres, for the hotter stars. Overall, we find good agreementbetween the ages of the MC clusters derived from our integrated spectra(and the evolutionary synthesis modelling of the spectral indices) andages derived from analyses of the cluster color-magnitude diagrams, asfound in the literature. Hence, the principal conclusion of this studyis that ages of young stellar populations can be reliably measured frommodelling of their integrated spectra.

Surface brightness profiles and structural parameters for 53 rich stellar clusters in the Large Magellanic Cloud
We have compiled a pseudo-snapshot data set of two-colour observationsfrom the Hubble Space Telescope archive for a sample of 53 rich LMCclusters with ages of 106-1010 yr. We presentsurface brightness profiles for the entire sample, and derive structuralparameters for each cluster, including core radii, and luminosity andmass estimates. Because we expect the results presented here to form thebasis for several further projects, we describe in detail the datareduction and surface brightness profile construction processes, andcompare our results with those of previous ground-based studies. Thesurface brightness profiles show a large amount of detail, includingirregularities in the profiles of young clusters (such as bumps, dipsand sharp shoulders), and evidence for both double clusters andpost-core-collapse (PCC) clusters. In particular, we find power-lawprofiles in the inner regions of several candidate PCC clusters, withslopes of approximately -0.7, but showing considerable variation. Weestimate that 20 +/- 7 per cent of the old cluster population of theLarge Magellanic Cloud (LMC) has entered PCC evolution, a similarfraction to that for the Galactic globular cluster system. In addition,we examine the profile of R136 in detail and show that it is probablynot a PCC cluster. We also observe a trend in core radius with age thathas been discovered and discussed in several previous publications bydifferent authors. Our diagram has better resolution, however, andappears to show a bifurcation at several hundred Myr. We argue that thisobserved relationship reflects true physical evolution in LMC clusters,with some experiencing small-scale core expansion owing to mass loss,and others large-scale expansion owing to some unidentifiedcharacteristic or physical process.

Magellanic Clouds stellar clusters. II. New B,V CM diagrams for 6 LMC and 10 SMC clusters
We present new CCD photometry for 6 LMC and 10 SMC stellar clusterstaken at the ESO 1.54-m Danish Telescope in La Silla, to extend aprevious investigation on Magellanic Clouds clusters based on HSTsnapshots. Thanks to the much larger area covered by the Danishdetector, we investigate the spatial distribution of cluster stars,giving V, (B-V) CM diagrams for both clusters and surrounding fields.Evidence of a complex history of star formation in the Clouds isoutlined, showing that old field populations in both Clouds havemetallicities much lower than normally adopted for them (Z = 0.008 and Z= 0.004 for LMC and SMC respectively), with SMC field stars more metalpoor than in the LMC. Observational data concerning the red clump offield stars in both Clouds are briefly discussed. Based on observationscarried out at the European Southern Observatory, La Silla, Chile.

A Large and Homogeneous Sample of CMDs of LMC Stellar Clusters
We present the photometric results of 21 stellar clusters of the LargeMagellanic Cloud. The WFPC2 images were retrieved from the HST archive.Simple stellar populations in a large spread of age are well representedin the sample of color-magnitude diagrams shown here.

Large Magellanic Cloud stellar clusters. I. 21 HST colour magnitude diagrams
We present WFPC2 photometry of 21 stellar clusters of the LargeMagellanic Cloud obtained on images retrieved from the Hubble SpaceTelescope archive. The derived colour magnitude diagrams (CMDs) arepresented and discussed. This database provides a sample of CMDsrepresenting, with reliable statistics, simple stellar populations witha large spread of age. The stars in the core of the clusters are allresolved and measured at least down to the completeness limit; themagnitudes of the main sequence terminations and of the red giant clumpare also evaluated for each cluster, together with the radius at halfmaximum of the star density. Based on observations made with theNASA/ESA Hubble Space Telescope, obtained from the data archive at theSpace Telescope Institute. STScI is operated by the association ofUniversities for Research in Astronomy, Inc. under the NASA contract NAS5-26555. Table 1 is only available in electronic form athttp://www.edpsciences.org

A Revised and Extended Catalog of Magellanic System Clusters, Associations, and Emission Nebulae. II. The Large Magellanic Cloud
A survey of extended objects in the Large Magellanic Cloud was carriedout on the ESO/SERC R and J Sky Survey Atlases, checking entries inprevious catalogs and searching for new objects. The census provided6659 objects including star clusters, emission-free associations, andobjects related to emission nebulae. Each of these classes containsthree subclasses with intermediate properties, which are used to infertotal populations. The survey includes cross identifications amongcatalogs, and we present 3246 new objects. We provide accuratepositions, classification, and homogeneous measurements of sizes andposition angles, as well as information on cluster pairs andhierarchical relation for superimposed objects. This unification andenlargement of catalogs is important for future searches of fainter andsmaller new objects. We discuss the angular and size distributions ofthe objects of the different classes. The angular distributions show twooff-centered systems with different inclinations, suggesting that theLMC disk is warped. The present catalog together with its previouscounterpart for the SMC and the inter-Cloud region provide a totalpopulation of 7847 extended objects in the Magellanic System. Theangular distribution of the ensemble reveals important clues on theinteraction between the LMC and SMC.

Ca II Triplet Spectroscopy of Giants in Small Magellanic Cloud Star Clusters: Abundances, Velocities, and the Age-Metallicity Relation
We have obtained spectra at the Ca ii triplet of individual red giantsin seven Small Magellanic Cloud (SMC) star clusters whose ages rangefrom ~4 to 12 Gyr. The spectra have been used to determine meanabundances for six of the star clusters to a typical precision of 0.12dex. When combined with existing data for other objects, the resultingSMC age-metallicity relation is generally consistent with that for asimple model of chemical evolution, scaled to the present-day SMC meanabundance and gas mass fraction. Two of the clusters (Lindsay 113 andNGC 339), however, have abundances that are ~0.5 dex lower than thatexpected from the mean age-metallicity relation. It is suggested thatthe formation of these clusters, which have ages of ~5 Gyr, may haveinvolved the infall of unenriched gas, perhaps from the MagellanicStream. The spectra also yield radial velocities for the seven clusters.The resulting velocity dispersion is 16 +/- 4 km s^-1, consistent withthose of the SMC planetary nebula and carbon star populations.

A Search for Old Star Clusters in the Large Magellanic Cloud
Abstract image available at:http://adsabs.harvard.edu/abs/1997AJ....114.1920G

Integrated UBV Photometry of 624 Star Clusters and Associations in the Large Magellanic Cloud
We present a catalog of integrated UBV photometry of 504 star clustersand 120 stellar associations in the LMC, part of them still embedded inemitting gas. We study age groups in terms of equivalent SWB typesderived from the (U-B) X (B-V) diagram. The size of the spatialdistributions increases steadily with age (SWB types), whereas adifference of axial ratio exists between the groups younger than 30 Myrand those older, which implies a nearly face-on orientation for theformer and a tilt of ~45^deg^ for the latter groups. Asymmetries arepresent in the spatial distributions, which, together with thenoncoincidence of the centroids for different age groups, suggest thatthe LMC disk was severely perturbed in the past.

A study of clusters and field stars in two regions in the Large Magellanic Cloud.II. Colour-magnitude diagrams and luminosity functions.
The stellar populations in two regions of the Large Magellanic Cloud,one in the NW and one in the SW, are analysed to a limiting absolutevisual magnitude of about M_V_=3.5mag Colour-magnitude diagrams arepresented for three faint clusters in each region as well as for thepopulations in their surrounding fields. The clusters in the NW regionhave ages between 0.1 and 0.5Gyr and metallicities close to solarwhereas those in the SW are about 1Gyr old and of lower metallicity.Also the field populations in the two regions have different characters.Both contain strong components of ages around 1 to 3Gyr. In the NWregion a young component, 0.2-0.6Gyr, exists which is completely missingin the SW region. The latter contains a weak but well identifiedgeneration about 7-10Gyr old which may be traced also in the NW region.Comparisons with other regions in the Large Cloud are carried out. TheSW part of the LMC differs from the others by an almost total lack ofyoung generations. The luminosity functions in many parts of the LargeCloud are otherwise rather similar. The generations identified hereconfirm that the initial star formation in the LMC, more than 7Gyr ago,was weak and that a much stronger star production occurred during theperiod 0.5 to 4.0Gyr ago.

Spectroscopy of giants in LMC clusters. II - Kinematics of the cluster sample
Velocities for 83 star clusters in the LMC are analyzed, based onindividual stellar velocities measured at the Calcium triplet. One-halfof the clusters are objects in the outer parts of the LMC which had noprevious velocity determinations. Published velocities for intermediateand old clusters are shown to have had systematic errors. These newvelocities with various rotation curve analyses of the LMC, and testaspects of the twisted disk model proposed by Freeman et al. (1983).When the transverse motion of the LMC is taken into account, a singlerotating disk solution fits the old and intermediate-aged clusters andother tracers (i.e., there is no need for an additional 'tilted disk'system).

Spectroscopy of giants in LMC clusters. I - Velocities, abundances, and the age-metallicity relation
Velocities and equivalent widths are presented for a large sample of LMCclusters. The calcium abundance is found to be a sensitive abundanceindicator over a very wide range of (Fe/H) between 0.0 and -2.2. Theage-metallicity relation is constructed for the inner and outer parts ofthe LMC. This relationsip can be characterized by a simple one-zoneenrichment model. The abundances for the inner and outer clusters at anage of 2 Gyr are nearly identical, so that little radial abundancegradient is evident in the cluster system.

The cluster system of the Large Magellanic Cloud
A new catalog of clusters in the Large Magellanic Cloud has beenconstructed from searches of the IIIa-J component of the ESO/SERCSouthern Sky Atlas. The catalog contains coordinate and diametermeasurements of 1762 clusters in a 25 deg x 25 deg area of sky centeredon the LMC, but excluding the very crowded 3.5 sq deg region around theBar. The distribution of these clusters appears as two superimposedelliptical systems. The higher density inner system extends over about 8deg; the lower density outer system can be represented by a 13 deg x 10deg disk inclined at 42 deg to the line of sight. There are suggestionsof two weak 'arms' in the latter.

Ultraviolet colors as age indicators for LMC clusters
Empirical correlations are found between log ages and the intrinsicultraviolet colors for 27 LMC clusters. The problems and limitations ofusing these correlations as age indicators for LMC clusters and otherstellar populations are discussed. The correlations are used to estimatethe ages of two LMC clusters of unknown age (NGC 1968 and NGC 1974) andthe nuclei of two nearby blue compact dwarf galaxies (NGC 1705 and NGC5253). For the latter two objects optical- and ultraviolet-based ageestimates are in good agreement.

LMC clusters - Age calibration and age distribution revisited
The empirical age relation for star clusters in the Large MagellanicCloud presented by Elson and Fall (1985) are reexamined using ages basedonly on main-sequence turnoffs. The present sample includes 57 clusters,24 of which have color-magnitude diagrams published since 1985. The newcalibration is very similar to that found previously, and the scatter inthe relation corresponds to uncertainties of about a factor of 2 in age.The age distribution derived from the new calibration does not differsignificantly from that derived in earlier work. It is compared with agedistributions estimated by other authors for different samples ofclusters, and the results are discussed.

A catalog of LMC star clusters outside the Hodge-Wright atlas
The paper presents a catalog of 156 clusters outside the boundaries ofthe Hodge and Wright (1967) LMC atlas. The catalog contains coordinatesaccurate to 1-2 arcsec, offsets from the edge of the appropriate SRCJplates, cross references to previous identifications, and finding chartsof the brighter clusters. As defined by the clusters, the Hodge andWright atlas is found to represent the extent of the LMC to the west,and reasonably well to the east. To the north and the south, the clustersystem extends substantially beyond the boundaries of the atlas. Thesouthern clusters delineate a portion of the 'spiral arm' noted by deVaucouleurs (1955).

Distribution of spectral types in the LMC clusters
The distribution of spectral types in 42 LMC globular star clusterscovering all evolutionary ages was determined using objective prismspectra taken with the 1.2-m U.K. Schmidt Telescope in Australia. Thederived spectral type distributions show that the clusters can bedivided into five age categories from about 10 to the 7th to more than10 to the 9th yr. Several clusters were found to contain carbon starswith C/M ratios ranging from 0.07 to 0.4. These ratios were comparedwith those found for the SMC clusters and the Milky Way. It was foundthat the stars of the LMC exhibit a smaller range of C/M ratios than inthe SMC, but larger than in the Galaxy, thus providing an additionaltest of the theoretical models predicting a correlation between the C/Mratio and metal content. It was also found that the majority of youngclusters were embedded in older fields, while the intrmediate clusterswere embeded in younger fields, and the remote old clusters wereembedded in a stellar content of similar age.

CCD photometry of Large Magellanic Cloud clusters. IV - The metal-rich, remote southern cluster LW 79
CCD BVR photometry of over 1200 stars in the populous southern LMC starcluster LW 79 is presented. A variety of estimates indicate that the ageof LW is 1.8 + or - 0.3 x 10 to the 9th yr. The metallicity of LW 79 isestimated to be - 0.3 + or - 0.3 based on comparisons of the CM diagramsof LW 79 with those of NGC 752 and NGC 7789. The true distance modulusof LW 79 is found to be about 18.4 depending on the method used toestimate it. No evidence for mass segregation in LW 79 is found. A classof stars evident in the CM diagram of LW 79 but not predicted usingstandard evolutionary models is identified.

The population of Large Magellanic Cloud field stars in a remote southwestern area
The stars in a remote southwestern part of the LMC show that at thisposition 4.5 kpc from the center of the Cloud the stellar population isdominated by an intermediate population of stars; a true Population IIis not detectable in the color-magnitude diagram, which resembles inmany respects those for other remote areas of the LMC. The main-sequenceluminosity function is steeper than that reported for the LMC bar, whichprobably means that this remote field has a somewhat older mean age ofabout 3 Gyrs.

Spectral classification of bright stars in remote LMC clusters. III
Spectral classification catalogs and their identification charts fortwenty-one remote LMC globular clusters and their adjoining fields aregiven in this paper. The studied clusters are found to be among theoldest globular LMC clusters and are located in various places aroundthe galaxy at distances larger than 5 deg from the center of the LMCbar. For this project, film copies of the 1.2 m U.K. Schmidt prismplates were examined in Athens by means of a binocular microscope. Allthe stars classified in each cluster are brighter than V of about 17.5mag and are located within the cluster's tidal radius.

Ages and metallicities of LMC and SMC red clusters through H-beta and G band photometry
Narrow band integrated photometry of the H-beta and G band absorptionfeatures for 41 LMC and 10 SMC red star clusters is presented. Anage-metallicity calibration is provided for the color-color diagram. SWBtypes between IV and VII are derived for 23 unclassified clusters, andtheir distribution in the age versus metallicity plane is discussed. Astudy of chemical evolution of the Magellanic Clouds has shown that theLMC presents a steeper chemical enrichment slope. An intrinsicmetallicity dispersion is found in the LMC chemical evolution,indicating that the gas has been inhomogeneous at any time, with localenrichment prevailing over a global one. One zone model describes theevolution of both clouds, the efficiency of star cluster formation beinglarger in the LMC. The LMC presents a burst of star cluster formation att = 4.5 x 10 to the 9th yr. New B - V data for fainter SMC clusters arealso presented, providing an essentially complete color histogram forclusters with globular cluster appearance.

CCD photometry of large Magellanic cloud clusters. I - The remote cluster NGC 1777
Photographic (B and V) and CCD (B, V, and R) photometry of stars in theremote LMC cluster NGC 1777, and integrated UBV photometry of the innerpart of the cluster are presented. A comparison of the results from thetwo techniques revealed large (about 0.2 mag) systematic differenceswhich were attributed to the difficulty of faint photographicphotometry. The photographic calibration depended on images produced bya Racine wedge, while the CCD calibration was accomplished in a manneranalogous to photoelectric photometry. The stellar photometry provides aC-M diagram to V equal to about 21.5 which includes an evolved mainsequence and a well-populated giant branch. A variety of methods,including comparisons of the observations to two sets of isochrones,allows us to estimate the cluster age as 0.9 + -0.2 x 10 to the 9thyears. However, we are only able to estimate the metallicity (Fe/H)crudely as -0.7 + or - 0.5. The C-M diagrams of the field in threeregions near NGC 1777 indicate the presence of stars in the age range 1x 10 to the 9th to less than or equal to 3 x 10 to the 9th yearsalthough we are unable to discern whether a mixture of two or moredistinct populations or a continuous distribution of field-star ages isresponsible for this spread.

A photographic color-magnitude diagram for the remote LMC cluster NGC 1777.
Not Available

A Catalogue of Clusters in The LMC
Not Available

A catalogue of clusters in the outer parts of the Large Magellanic Cloud
Abstract image available at:http://adsabs.harvard.edu/abs/1963MNRAS.127...31L

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Mensa
Right ascension:04h55m48.00s
Declination:-74°17'00.0"
Apparent magnitude:99.9

Catalogs and designations:
Proper Names   (Edit)
NGC 2000.0NGC 1777

→ Request more catalogs and designations from VizieR