Contents
Images
Upload your image
DSS Images Other Images
Related articles
Bayesian inference of stellar parameters and interstellar extinction using parallaxes and multiband photometry Astrometric surveys provide the opportunity to measure the absolutemagnitudes of large numbers of stars, but only if the individualline-of-sight extinctions are known. Unfortunately, extinction is highlydegenerate with stellar effective temperature when estimated frombroad-band optical/infrared photometry. To address this problem, Iintroduce a Bayesian method for estimating the intrinsic parameters of astar and its line-of-sight extinction. It uses both photometry andparallaxes in a self-consistent manner in order to provide anon-parametric posterior probability distribution over the parameters.The method makes explicit use of domain knowledge by employing theHertzsprung-Russell Diagram (HRD) to constrain solutions and to ensurethat they respect stellar physics. I first demonstrate this method byusing it to estimate effective temperature and extinction from BVJHKdata for a set of artificially reddened Hipparcos stars, for whichaccurate effective temperatures have been estimated from high-resolutionspectroscopy. Using just the four colours, we see the expected strongdegeneracy (positive correlation) between the temperature andextinction. Introducing the parallax, apparent magnitude and the HRDreduces this degeneracy and improves both the precision (reduces theerror bars) and the accuracy of the parameter estimates, the latter byabout 35 per cent. The resulting accuracy is about 200 K in temperatureand 0.2 mag in extinction. I then apply the method to estimate theseparameters and absolute magnitudes for some 47 000 F, G, K Hipparcosstars which have been cross-matched with Two-Micron All-Sky Survey(2MASS). The method can easily be extended to incorporate the estimationof other parameters, in particular metallicity and surface gravity,making it particularly suitable for the analysis of the 109stars from Gaia.
| Vertical distribution of Galactic disk stars. IV. AMR and AVR from clump giants We present the parameters of 891 stars, mostly clump giants, includingatmospheric parameters, distances, absolute magnitudes, spatialvelocities, galactic orbits and ages. One part of this sample consistsof local giants, within 100 pc, with atmospheric parameters eitherestimated from our spectroscopic observations at high resolution andhigh signal-to-noise ratio, or retrieved from the literature. The otherpart of the sample includes 523 distant stars, spanning distances up to1 kpc in the direction of the North Galactic Pole, for which we haveestimated atmospheric parameters from high resolution but lowsignal-to-noise Echelle spectra. This new sample is kinematicallyunbiased, with well-defined boundaries in magnitude and colours. Werevisit the basic properties of the Galactic thin disk as traced byclump giants. We find the metallicity distribution to be different fromthat of dwarfs, with fewer metal-rich stars. We find evidence for avertical metallicity gradient of -0.31 dex kpc-1 and for atransition at ~4-5 Gyr in both the metallicity and velocities. Theage-metallicity relation (AMR), which exhibits a very low dispersion,increases smoothly from 10 to 4 Gyr, with a steeper increase for youngerstars. The age-velocity relation (AVR) is characterized by thesaturation of the V and W dispersions at 5 Gyr, and continuous heatingin U.
| Vertical distribution of Galactic disk stars. I. Kinematics and metallicity Nearly 400 Tycho-2 stars have been observed in a 720 square degree fieldin the direction of the North Galactic Pole with the high resolutionechelle spectrograph ELODIE. Absolute magnitudes, effectivetemperatures, gravities and metallicities have been estimated, as wellas distances and 3D velocities. Most of these stars are clump giants andspan typical distances from 200 pc to 800 pc to the galactic mid-plane.This new sample, free of any kinematical and metallicity bias, is usedto investigate the vertical distribution of disk stars. The old thindisk and thick disk populations are deconvolved from thevelocity-metallicity distribution of the sample and their parameters aredetermined. The thick disk is found to have a moderate rotational lag of-51 +/- 5 km s-1 with respect to the Sun with velocityellipsoid (sigmaU , sigmaV , sigmaW )=(63+/- 6, 39+/- 4, 39+/- 4) km s-1, mean metallicity of[Fe/H] = -0.48 +/- 0.05 and a high local normalization of 15 +/- 7%.Combining this NGP sample with a local sample of giant stars from theHipparcos catalogue, the orientation of the velocity ellipsoid isinvestigated as a function of distance to the plane and metallicity. Wefind no vertex deviation for old stars, consistent with an axisymmetricGalaxy. Paper II is devoted to the dynamical analysis of the sample,puting new constraints on the vertical force perpendicular to thegalactic plane and on the total mass density in the galactic plane.Based on observations made at the Observatoire de Haute Provence(France). Data are only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.125.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/398/141
| Photoelectric photometry of stars near the north Galactic pole. II UBV photometric observations of about 700 stars near the north Galacticpole, obtained using single-channel photometers on the 40-cm and 60-cmCassegrain telescopes at Kvistaberg Observatory (during 1976-1983) andthe Spanish International Observatory (during 1984), respectively, aspart of a program including the stars to be observed by the Hipparcosspacecraft, are reported. The data are presented in a series of tablesand briefly characterized.
|
Submit a new article
Related links
Submit a new link
Member of following groups:
|
Observation and Astrometry data
Constellation: | かみのけ座 |
Right ascension: | 12h43m22.41s |
Declination: | +17°49'42.6" |
Apparent magnitude: | 9.338 |
Proper motion RA: | 3.3 |
Proper motion Dec: | 4.3 |
B-T magnitude: | 10.738 |
V-T magnitude: | 9.454 |
Catalogs and designations:
|