Contents
Images
Upload your image
DSS Images Other Images
Related articles
Infrared Surface Brightness Fluctuations of Magellanic Star Clusters We present surface brightness fluctuations (SBFs) in the near-IR for 191Magellanic star clusters available in the Second Incremental and All SkyData releases of the Two Micron All Sky Survey (2MASS) and compare themwith SBFs of Fornax Cluster galaxies and with predictions from stellarpopulation models as well. We also construct color-magnitude diagrams(CMDs) for these clusters using the 2MASS Point Source Catalog (PSC).Our goals are twofold. The first is to provide an empirical calibrationof near-IR SBFs, given that existing stellar population synthesis modelsare particularly discrepant in the near-IR. Second, whereas mostprevious SBF studies have focused on old, metal-rich populations, thisis the first application to a system with such a wide range of ages(~106 to more than 1010 yr, i.e., 4 orders ofmagnitude), at the same time that the clusters have a very narrow rangeof metallicities (Z~0.0006-0.01, i.e., 1 order of magnitude only). Sincestellar population synthesis models predict a more complex sensitivityof SBFs to metallicity and age in the near-IR than in the optical, thisanalysis offers a unique way of disentangling the effects of age andmetallicity. We find a satisfactory agreement between models and data.We also confirm that near-IR fluctuations and fluctuation colors aremostly driven by age in the Magellanic cluster populations and that inthis respect they constitute a sequence in which the Fornax Clustergalaxies fit adequately. Fluctuations are powered by red supergiantswith high-mass precursors in young populations and by intermediate-massstars populating the asymptotic giant branch in intermediate-agepopulations. For old populations, the trend with age of both fluctuationmagnitudes and colors can be explained straightforwardly by evolution inthe structure and morphology of the red giant branch. Moreover,fluctuation colors display a tendency to redden with age that can befitted by a straight line. For the star clusters only,(H-Ks)=(0.21+/-0.03)log(age)-(1.29+/-0.22) once galaxies areincluded, (H-Ks)=(0.20+/-0.02)log(age)-(1.25+/-0.16).Finally, we use for the first time a Poissonian approach to establishthe error bars of fluctuation measurements, instead of the customaryMonte Carlo simulations.This research has made use of the NASA/ IPAC Infrared Science Archive,which is operated by the Jet Propulsion Laboratory, California Instituteof Technology, under contract with the National Aeronautics and SpaceAdministration.
| Cepheids in LMC Clusters and the Period-Age Relation We have made a new comparison of the positions of Cepheids and clustersin the LMC and constructed a new empirical period-age relation takinginto account all available data on Cepheids in the LMC bar provided bythe OGLE project. The most probable relation is logT=8.50-0.65 logP, inreasonably good agreement with theoretical expectations. NumerousCepheids in rich clusters of the LMC provide the best data for comparingtheories of stellar evolution and pulsation and the dynamical evolutionof clusters with observations. These data suggest that stars undergoingtheir first crossing of the instability strip are first-overtonepulsators, though the converse is true of only a small fraction offirst-overtone stars. Several rich clusters with suitable ages have noCepheids—a fact that is not understood and requires verification.Differences in the concentration of Cepheids toward their clustercenters probably reflect the fact that the clusters are at differentstages of their dynamical evolution, with the Cepheids in clustercoronas being ejected from the cluster cores during dynamicalinteractions between stars.
| A secondary clump of red giant stars: why and where Based on the results of detailed population synthesis models, Girardi etal. recently claimed that the clump of red giants in thecolour-magnitude diagram (CMD) of composite stellar populations shouldpresent an extension to lower luminosities, which goes down to about0.4mag below the main clump. This feature is made of stars just massiveenough to have ignited helium in non-degenerate conditions, andtherefore corresponds to a limited interval of stellar masses and ages.In the present models, which include moderate convective overshooting,it corresponds to ~1Gyr old populations. In this paper, we go into moredetail about the origin and properties of this feature. We first comparethe clump theoretical models with data for clusters of different agesand metallicities, basically confirming the predicted behaviour. We thenrefine the previous models in order to show the following behaviour. (i)The faint extension is expected to be clearly separated from the mainclump in the CMD of metal-rich populations, defining a `secondary clump'by itself. (ii) It should be present in all galactic fields containing~1Gyr old stars and with mean metallicities higher than about Z=0.004.(iii) It should be particularly strong, if compared with the main redclump, in galaxies that have increased their star formation rate in thelast Gyr or so of their evolution. In fact, secondary clumps similar tothe model predictions are observed in the CMD of nearby stars fromHipparcos data, and in those of some Large Magellanic Cloud fieldsobserved to date. There are also several reasons why this secondaryclump may be missing or hidden in other observed CMDs of galaxy fields.For instance, it becomes indistinguishable from the main clump if thephotometric errors or differential absorption are larger than about0.2mag. None the less, this structure may provide important constraintson the star formation history of Local Group galaxies. We comment alsoon the intrinsic luminosity variation and dispersion of clump stars,which may limit their use as either absolute or relative distanceindicators, respectively.
| A Revised and Extended Catalog of Magellanic System Clusters, Associations, and Emission Nebulae. II. The Large Magellanic Cloud A survey of extended objects in the Large Magellanic Cloud was carriedout on the ESO/SERC R and J Sky Survey Atlases, checking entries inprevious catalogs and searching for new objects. The census provided6659 objects including star clusters, emission-free associations, andobjects related to emission nebulae. Each of these classes containsthree subclasses with intermediate properties, which are used to infertotal populations. The survey includes cross identifications amongcatalogs, and we present 3246 new objects. We provide accuratepositions, classification, and homogeneous measurements of sizes andposition angles, as well as information on cluster pairs andhierarchical relation for superimposed objects. This unification andenlargement of catalogs is important for future searches of fainter andsmaller new objects. We discuss the angular and size distributions ofthe objects of the different classes. The angular distributions show twooff-centered systems with different inclinations, suggesting that theLMC disk is warped. The present catalog together with its previouscounterpart for the SMC and the inter-Cloud region provide a totalpopulation of 7847 extended objects in the Magellanic System. Theangular distribution of the ensemble reveals important clues on theinteraction between the LMC and SMC.
| Hierarchical star formation from the time-space distribution of star clusters in the Large Magellanic Cloud The average age difference between pairs of star clusters in the LargeMagellanic Cloud (LMC) increases with their separation as the ~0.35power. This suggests that star formation is hierarchical in space and intime. Small regions form stars quickly and large regions, which oftencontain the small regions, form stars over a longer period. A similarresult found previously for Cepheid variables is statistically lesscertain than the cluster result.
| A Search for Old Star Clusters in the Large Magellanic Cloud Abstract image available at:http://adsabs.harvard.edu/abs/1997AJ....114.1920G
| Integrated UBV Photometry of 624 Star Clusters and Associations in the Large Magellanic Cloud We present a catalog of integrated UBV photometry of 504 star clustersand 120 stellar associations in the LMC, part of them still embedded inemitting gas. We study age groups in terms of equivalent SWB typesderived from the (U-B) X (B-V) diagram. The size of the spatialdistributions increases steadily with age (SWB types), whereas adifference of axial ratio exists between the groups younger than 30 Myrand those older, which implies a nearly face-on orientation for theformer and a tilt of ~45^deg^ for the latter groups. Asymmetries arepresent in the spatial distributions, which, together with thenoncoincidence of the centroids for different age groups, suggest thatthe LMC disk was severely perturbed in the past.
| Age distribution of LMC clusters from their integrated UBV colors: history of star formation. In this paper we revise the relationship between ages and metallicitiesof LMC star clusters and their integrated UBV colors. The study standson the catalog of UBV colors of the Large Magellanic Cloud (LMC)clusters by Bica et al. (1994; BCDSP) and the photometric models ofsingle stellar populations (SSP) calculated by Bertelli et al. (1994).These photometric models nicely describe the color distribution of LMCclusters in the (U-B) vs. (B-V) plane together with the observeddispersion of the colors and the existence of a gap in a certain regionof this diagram. In the case of blue clusters, most of the dispersion inthe colors can be accounted for by the presence of stochastic effects onthe mass distribution of stars, whereas for the red ones additionaldispersion's of ~0.2dex in metallicity and of ~0.05mag in color excessare needed. From comparing the observed distribution of integratedcolors in the (U-B) vs. (B-V) diagram with the theoretical models, itturns out that: 1) The data are consistent with the presence of a gap(period of quiescence) in the history of cluster formation. If theage-metallicity relation (AMR) for the LMC obeys the simple model ofchemical evolution, the gap is well evident and corresponds to the ageinterval ~3Gyr to (12-15)Gyr. On the contrary, if the chemicalenrichment has been much slower than in the simple model, so thatintermediate age clusters are less metal rich, the gap is expected tooccur over a much narrower color range and to be hidden by effects ofcolor dispersion. 2) The bimodal distribution of B-V colors can bereproduced by a sequence of clusters almost evenly distributed in thelogarithm of the age, whose metallicity is governed by a normal AMR. Noneed is found of the so-called phase transitions in the integratedcolors of a cluster taking place at suitable ages (Renzini & Buzzoni1986). 3) The gap noticed by BCDSP in the (U-B) vs. (B-V) plane can beexplained by the particular direction along which cluster colors aredispersed in that part of the (U-B) vs. (B-V) diagram. Also in thiscase, no sudden changes in the integrated properties of clusters must beinvoked. The results of this analysis are used to revise the empiricalmethod proposed by Elson & Fall (1985, EF85) to attribute ages toLMC clusters according to their integrated UBV colors. We show that theEF85 method does not provide the correct relation between ages andcolors for clusters of low metallicity and hence its inability to datethe old clusters. We propose two modifications to the definition of theparameter S of EF85 such that the age sequence of red clusters issuitably described, and the intrinsic errors on ages caused by the heavypresence of various effects dispersing the colors are reduced to aminimum. The age sequence is calibrated on 24 template clusters forwhich ages were independently derived from recent color-magnitudediagrams (CMD). Finally, we attribute ages to all clusters present inBCDSP catalog, and derive the global age distribution function (ADF) forLMC clusters. The ADF presents new features that were not clear inprevious analyses of UBV data, but were already suggested by a number ofindependent observational studies. The features in question are periodsof enhanced cluster formation at ~100Myr and 1-2Gyr, and a gap in thecluster formation history between ~3 and (12-15)Gyr. The peaks observedin the distribution of B-V colors are found to be sensitive to thepresence of these periods of enhanced cluster formation and the lack ofextremely red clusters caused by the age gap between intermediate-ageand old clusters.
| The MACHO project LMC variable star inventory. 1: Beat Cepheids-conclusive evidence for the excitation of the second overtone in classical Cepheids We report the discovery of 45 beat Cepheids in the Large MegellanicCloud (LMC) using the Massive Compact Halo Object (MACHO) shown to breakcleanly into two period-ratio groups, providing the first unambiguousevidence that the second overtone is indeed excited in Cepheids. 30stars are beating in the fundamental and first overtone mode (F/1H, witha period ratio in the neighborhood of 0.72), and 15 stars are beating inthe first and second overtone (1H/2H, with a period ratio near 0.80).The F/1H period ratios are systematically higher than known Galacticbeat Cepeids, indicating a metallicity dependence whose sense is inagreement with theory. Beat Cepheids in the LMC are found to select the1H/2H mode for principal periods shorter than 1.25 days. We find thefraction of Cepheids excited in two modes to be about 20% for stars withfundamental periods shorter than 2.5 days. We fail to confirm any of theproposed beat Cepheid candidates common to our sample from the surveysof Andreasen (1987) and Andreasen & Petersen (1987). We also presentfinder charts and find several of the beat Cepheids to be in or near LMCclusters. In addition, we find three double Cepheids -unresolved pairsof Cepheids which may be physically related.
| Globular clusters in the Magellanic Clouds - II. IR-array photometry for 12 globular clusters and contributions to the integrated cluster light We report JHK results of observations of 12 globular clusters in theLarge Magellanic Cloud (LMC), and present colour-magnitude diagrams downto K=16 (corresponding to M_K~-2.6) for ~450 stars in these clusters. Wemerge our data with BV photometry for 11 LMC clusters, previouslypublished in Paper I of this series, and use the merged data to studythe evolution of integrated magnitudes and colours of simple stellarpopulations (SSPs), which are samples of coeval and chemicallyhomogeneous stars. In particular, we examine the effect of phasetransitions (ph-ts), which signal the appearance of the RGB or AGB inSSPs of increasing age. We find that the AGB contributes ~60 per cent ofthe integrated cluster light at K, while the contribution from thebright RGB stars (i.e., K_0<14.3, log L/L_~2.66) is correlated withthe s parameter (Elson & Fall) ranging from ~0 per cent for s=0 upto ~20 per cent for s>35. The age at which the RGB ph-t actuallytakes place (i.e., the calibration of s with age) depends on the detailsof stellar evolutionary models. In 'classical' models (those withoutovershooting), the RGB ph-t occurs at ~(6+/-2)x10^8 yr and lasts for2.9x10^8 yr. In models with overshooting, the occurrence of the RGB ph-tis later [at ~(1.5+/-0.3)x10^9 yr] and the duration is longer (4.3x10^8yr). While the age and duration of the RGB ph-t depend on the treatmentof mixing, both classical and overshooting models yield the samefractional contribution of RGB stars to the integrated cluster lightbefore and after the RGB ph-t, in agreement with the Fuel ComsumptionTheorem (Renzini & Buzzoni). We report extensive experiments whichshow that the variations of the integrated colours of the LMC clustersfrom s=31 to 43 are controlled by the complex interplay of variousfactors, different from colour to colour and frequently dominated by thestochastic noise induced by a few very bright objects. The overallpicture that emerges is consistent with the early conclusions drawn byPersson et al. and Frogel et al. that the J-K colour is mostly driven bythe AGB stars, that V-K is substantially controlled by AGB and RGB stars(AGB stars being slightly more important), and that B-Vis partiallyinfluenced by the whole population of red stars brighter than the bulkof the RGB clump, but is also quite strongly dependent on theprogressive fading and reddening of the turn-off stars due to ageincrease.
| Globular clusters in the Magellanic Clouds - I. BV CCD photometry for 11 clusters. Abstract image available at:http://adsabs.harvard.edu/abs/1994MNRAS.271..385C
| CCD and IR photometry of intermediate-age Magellanic Clouds clusters The clusters of the Magellanic Clouds (MCs) are studied with a completedataset for the intermediate-age clusters to determine the integratedcolors and spectral energy distribution of the distant galaxies.Observations of a wide sample of MC clusters are conducted in differentspectral bands with attention given to the range in which observedintegrated color variations were most evident. The CCD and IRphotometric data are reduced, and color-magnitude diagrams are given for9 clusters in V and (B-V) and for 9 clusters in the the IR bands. Theobservational data yield important clues regarding the extension andlifetime increase of the RGB and the evolutionary status of theclusters. The RGB evolutionary phase transition and an increase in thenumber of evolved giant stars are found within the age range where theMC clusters show a color change.
| The cluster system of the Large Magellanic Cloud A new catalog of clusters in the Large Magellanic Cloud has beenconstructed from searches of the IIIa-J component of the ESO/SERCSouthern Sky Atlas. The catalog contains coordinate and diametermeasurements of 1762 clusters in a 25 deg x 25 deg area of sky centeredon the LMC, but excluding the very crowded 3.5 sq deg region around theBar. The distribution of these clusters appears as two superimposedelliptical systems. The higher density inner system extends over about 8deg; the lower density outer system can be represented by a 13 deg x 10deg disk inclined at 42 deg to the line of sight. There are suggestionsof two weak 'arms' in the latter.
| A theoretical and observational study of the Red Giant Branch phase transition in Magellanic Cloud clusters - A progress report Preliminary results are reported for an investigation comparingtheoretical models of the sudden appearance of an extended RGB (and itseffects on the spectral energy distributions of stellar populations)with data from ESO CCD observations of clusters in the LMC and SMC.Isochrones for the entire RGB are being constructed on the basis of 100new evolutionary sequences (calculated using the evolution code ofSweigart and Gross, 1976 and 1978) to permit determination of syntheticcolors and spectral energy distributions. The observations so farindicate a main sequence about 0.1 mag redder than that predicted by thepresent models or by the isochrones of VandenBerg and Bell (1985), andfail to show a B-V color difference at the RGB phase transition.
| Age calibration and age distribution for rich star clusters in the Large Magellanic Cloud An empirical relation is presented for estimating the ages of rich starclusters in the Large Magellanic Cloud (LMC), to within a factor ofabout 2, from their integrated UBV colors. The calibration is based onpublished ages for 58 LMC clusters derived from main-sequencephotometry, integrated spectra, or the extent of the asymptotic giantbranches. Using stellar population models, a sample of LMC clusters moremassive than about 10,000 solar masses is isolated, which is correctedfor incompleteness as a function of magnitude. An unbiased agedistribution for three clusters is then determined. The number ofclusters decreases with increasing age in a manner that is qualitativelysimilar to the age distribution for the open clusters in our Galaxy. TheLMC age distribution is, however, flatter, and the median age of theclusters is greater. If the formation rate has been approximatelyconstant over the history of the two galaxies, then the age distributionobtained here implies that clusters are disrupted more slowly in theLMC. The results contain no evidence for bursts in the formation ofclusters, although fluctuations on small time scales and slow variationsover the lifetime of the LMC cannot be ruled out.
| The extended giant branches of intermediate age globular clusters in the Magellanic Clouds. IV A complete survey is available for asymptotic giant-branch stars in therich star clusters of the Magellanic Clouds. Although data on themain-sequence turnoffs of these clusters are still incomplete, somesystematic properties of these stars emerge, when grouped by clusterage. Clusters younger than approximately 8 billion years have carbonstars at the tip of the giant branch, produced by the third dredge-upmechanism. Clusters younger than approximately 0.8 billion years havegiant branches populated by M stars. It is suggested that in stars ofthis mass range thermal pulses have not commenced before mass losscompletely erodes the stellar envelope. Cluster stars of 5 solar mass(turnoff approximately 80 million years) suffer about 80-percent massloss in the course of their evolution, compared with approximately 30percent for the oldest stars.
| M and S stars in the Magellanic Clouds The present consideration of digital spectra for 46 red stars in theSmall Magellanic Cloud (SMC), as well as in globular clusters of bothMagellanic Clouds, has yielded identifications of eight K stars, 18 Mstars, 19 early S stars, and a foreground dwarf. K, M, or S types arefound in the SMC among stars with B-V values of about 2, and most of thenoncarbon stars brighter than M(bol) of -4.3 in the clusters are foundto be S stars which evidently represent an intermediate stage in themodification of atmospheric composition. Tentative systematic trendswith cluster age indicate that the M-S and S-C transitions occur athigher luminosity and lower surface temperature in the younger, moremassive stars.
| Spectral classification of carbon stars in Magellanic Cloud clusters Image tube spectra of 33 stars in 17 Magellanic Cloud clusters and sixstars in the field of the SMC are discussed. Nineteen of the 21 carbonstars have been classified on Yamashita's (1972) system. None of thesestars, which have M(v) not less than -3, has strong C-13 features. Theweakness of CN relative to C2 suggests an affinity to CH stars in theGalaxy, in accordance with the idea that intermediate age clusters inthe Magellanic Clouds are metal-deficient. Stars with strong H-alphaemission are usually variables of large amplitude, and a period of 115day is found for a new red variable in NGC121 which has bright H-alpha.
| A Catalogue of Clusters in The LMC Not Available
|
Submit a new article
Related links
Submit a new link
Member of following groups:
|
Observation and Astrometry data
Catalogs and designations:
|